EarthCube Capabilities: CloudDrift: a platform for accelerating research with Lagrangian climate data

EarthCube 功能:CloudDrift:利用拉格朗日气候数据加速研究的平台

基本信息

  • 批准号:
    2126413
  • 负责人:
  • 金额:
    $ 47.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The DriftCloud project aims at propelling forward the discovery and use of unique oceanic Lagrangian observational data principally gathered by freely drifting buoys. The tools developed will utilize existing cyberinfrastructures and established open source and open access protocols in order to bring analyses of ocean observational and numerical heterogeneously distributed geospatial data at the fingertips of users with level of proficiency ranging from high school students to statistical experts. This will potentially contribute to more equitable access to data and computing resources for a broad spectrum of specific and interdisciplinary applications ranging from marine plastics transport to the impact of surface gravity waves on satellite sea surface temperature calibrations. A wide and diverse set of users will be able to access these notebooks which will be bound to openly-accessible cloud-based executable environments deployed on existing infrastructures thanks to collaborations with the EarthCube and other cognizant communities. This project will support an early-career scientist.The DriftCloud project will facilitate and accelerate the production and analysis of Lagrangian datasets by using the climate relevant Lagrangian data of sea surface current, sea surface temperature, and sea level pressure from the drifting buoys of the National Oceanic and Atmospheric Administration’s Global Drifter Program as a working framework. The project will generate new add-on datasets and a suite of modular and open source conversion tools to render Lagrangian datasets ready for analyses and optimized for cloud computing environments. An additional suite of open source tools will be developed for rapid and efficient visualizations and analyses of any Lagrangian data. The utilization of both suites of software tools will be fostered by creating pedagogical demonstration Jupyter Notebooks using the open source python language.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DriftCloud项目旨在推动发现和使用主要由自由漂移浮标收集的独特海洋拉格朗日观测数据。所开发的工具将利用现有的网络基础设施和既定的开放源代码和开放访问协议,以便使从高中生到统计专家等熟练程度的用户都能对海洋观测数据和数值型异质分布的地理空间数据进行分析。这可能有助于更公平地获取数据和计算资源,用于从海洋塑料运输到表面重力波对卫星海面温度校准的影响等广泛的具体和跨学科应用。由于与EarthCube和其他知名社区的合作,广泛而多样化的用户将能够访问这些笔记本电脑,这些笔记本电脑将绑定到部署在现有基础设施上的开放访问的基于云的可执行环境。DriftCloud项目将利用美国国家海洋和大气管理局全球漂流者计划的漂流浮标提供的与气候相关的海表海流、海表温度和海平面压力的拉格朗日数据作为工作框架,促进和加速拉格朗日数据集的制作和分析。该项目将生成新的附加数据集和一套模块化和开源转换工具,以渲染拉格朗日数据集,为分析做好准备,并针对云计算环境进行优化。将开发另外一套开源工具,用于快速有效地可视化和分析任何拉格朗日数据。这两套软件工具的使用将通过使用开源python语言创建教学演示的python Notebooks来促进。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shane Elipot其他文献

An integrated dataset of near-surface Eulerian fields and Lagrangian trajectories from an ocean model
一个来自海洋模型的近地表欧拉场和拉格朗日轨迹的综合数据集
  • DOI:
    10.1038/s41597-024-03813-z
  • 发表时间:
    2024-08-29
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Shane Elipot;Eli Faigle;Brian K. Arbic;Jay F. Shriver
  • 通讯作者:
    Jay F. Shriver

Shane Elipot的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shane Elipot', 18)}}的其他基金

Collaborative Research: A global census of submesoscale energetics using in-situ drifter observations and a high resolution ocean model
合作研究:利用原位漂流者观测和高分辨率海洋模型进行全球亚尺度能量普查
  • 批准号:
    2242111
  • 财政年份:
    2023
  • 资助金额:
    $ 47.69万
  • 项目类别:
    Standard Grant
RAPID-Evolution
快速进化
  • 批准号:
    2334091
  • 财政年份:
    2023
  • 资助金额:
    $ 47.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Mapping the kinematics and dynamics of tidal ocean currents with surface drifters
合作研究:利用表面漂流物绘制潮汐洋流的运动学和动力学图
  • 批准号:
    1851166
  • 财政年份:
    2019
  • 资助金额:
    $ 47.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Global Observational Constraints on Oceanic Response to Wind Forcing
合作研究:海洋对风强迫响应的全球观测限制
  • 批准号:
    1459482
  • 财政年份:
    2015
  • 资助金额:
    $ 47.69万
  • 项目类别:
    Standard Grant

相似海外基金

Impact of Dynamic Capabilities, Technological Readiness and Information Exchange Capabilities on the Resilience and Performance of Circular Supply Chains
动态能力、技术准备度和信息交换能力对循环供应链的弹性和绩效的影响
  • 批准号:
    24K05087
  • 财政年份:
    2024
  • 资助金额:
    $ 47.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 47.69万
  • 项目类别:
    Standard Grant
Adding AI-powered analysis capabilities to Lifelancer platform
为 Lifelancer 平台添加人工智能分析功能
  • 批准号:
    10089687
  • 财政年份:
    2024
  • 资助金额:
    $ 47.69万
  • 项目类别:
    Collaborative R&D
RII Track-4: NSF: Enabling Synergistic Multi-Robot Cooperation for Mobile Manipulation Beyond Individual Robotic Capabilities
RII Track-4:NSF:实现协同多机器人合作,实现超越单个机器人能力的移动操作
  • 批准号:
    2327313
  • 财政年份:
    2024
  • 资助金额:
    $ 47.69万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 47.69万
  • 项目类别:
    Continuing Grant
PharmaCrystNet: Improving the Predictive Capabilities of Crystallisation Models in Pharma
PharmaCrystNet:提高制药领域结晶模型的预测能力
  • 批准号:
    EP/Z533014/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.69万
  • 项目类别:
    Research Grant
Small Animal In Vivo Imaging Facility with microCT imaging capabilities
具有 microCT 成像功能的小动物体内成像设备
  • 批准号:
    LE240100032
  • 财政年份:
    2024
  • 资助金额:
    $ 47.69万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Transforming Cultural & Natural Resource Management workforce capabilities
转变文化
  • 批准号:
    LP210300151
  • 财政年份:
    2024
  • 资助金额:
    $ 47.69万
  • 项目类别:
    Linkage Projects
Collaborative Research: Increasing Capabilities of Heterogeneous Robot Teams through Mutually Beneficial Physical Interactions
协作研究:通过互利的物理交互提高异构机器人团队的能力
  • 批准号:
    2308653
  • 财政年份:
    2023
  • 资助金额:
    $ 47.69万
  • 项目类别:
    Standard Grant
MRI: Track 1 Acquisition of a High-Resolution Quadrupole Time-of-Flight Mass Spectrometer with Diverse Inlet and Ionization Capabilities for Chemical Analyses
MRI:轨道 1 采购具有多种入口和电离功能的高分辨率四极杆飞行时间质谱仪,用于化学分析
  • 批准号:
    2319939
  • 财政年份:
    2023
  • 资助金额:
    $ 47.69万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了