Models for Social, Ecological, and Biological Systems: Narrowing the Gap Between Theory and Applications
社会、生态和生物系统模型:缩小理论与应用之间的差距
基本信息
- 批准号:1927731
- 负责人:
- 金额:$ 3.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is aimed at development of mathematical tools for understanding and predicting behavior of a variety of important and apparently dissimilar biological phenomena and sociological processes, such as the spread of diseases, ecological changes, or the distribution and prevention of crime. Some salient features of these diverse phenomena can be described by mathematical models based on reaction-advection-diffusion equations that have been used extensively to investigate fundamental and ubiquitous phenomena in several areas of biology, and more recently in the social sciences. While these models are simplified versions of reality, their mathematical analysis has contributed to the understanding of many important phenomena. At the same time, the underlying equations can be extremely interesting and challenging from the mathematical point of view as their solutions can exhibit rich behaviors, e.g., pattern formation and traveling wave structures. The behavior of solutions reflects critical features of the system that mathematics models and have clear and convincing parallels with the evolution of real-world systems. However, there is still a large gap between real world systems and their more tractable mathematical models. One of the goals of this project is bridging this gap through the use of accumulated concrete data and the corresponding calibration and modification of mathematical models. Of particular importance is the analysis of systems which include heterogeneous environments, the understanding of the effects that non-local dispersal has on the behavior of the solutions, and the validation of these models with real-world data. Efforts will be focused on four reaction-advection-diffusion systems where the heterogeneities are due to: climate change in an ecological context, non-local and asymmetrical spread of information in the context of riots, income heterogeneities in the context of social segregation, and environment heterogeneities due to specific concentrated inputs. The primary goal of the project is to understand how heterogeneous environments and non-local dispersal impact solution patterns in both a general class of nonlinear reaction-diffusion equations as well in specific ecological and social contexts. Throughout this project the investigators will maintain and foster contacts with social scientists in order to conduct the much needed discourse between the mathematical theory and the applications. This project will focus on the development of an extensive theory for reaction-advection-diffusion systems in heterogeneous environments with applications in ecology and sociology. In particular, the objective of this research is three-fold: to expand the current mathematical theory for local and non-local reaction-advection-diffusion systems in heterogeneous environments, to gain insight into various (ecological, sociological, and biological) complex systems by modeling them using these types of systems, and to take an initial step toward bridging the gap between basic mathematical models and the complex real-world systems they aim to describe by incorporating the use of data. From the qualitative perspective, this work will be mainly concerned with exploring the effects that various dispersal mechanism have on the propagation (and lack thereof) of a solution in a heterogeneous environment: for example, determining the spreading speed, the existence of traveling wave solutions, pulsating fronts, traveling pulses, or generalized fronts in heterogeneous systems. Additionally, the fundamental issues of the global well-posedness of solutions to these systems, intermediate and long-term asymptotics, and existence and uniqueness of non-trivial steady-state solutions will be rigorously analyzed.
该研究旨在开发数学工具,用于理解和预测各种重要且明显不同的生物学现象和社会学过程的行为,例如疾病的传播,生态变化或犯罪的分布和预防。这些不同现象的一些显著特征可以通过基于反应-平流-扩散方程的数学模型来描述,这些数学模型已被广泛用于研究生物学几个领域以及最近在社会科学中的基本和普遍存在的现象。 虽然这些模型是现实的简化版本,但它们的数学分析有助于理解许多重要现象。同时,从数学的角度来看,基本方程可能非常有趣和具有挑战性,因为它们的解可以表现出丰富的行为,例如,图案形成和行波结构。解决方案的行为反映了数学模型系统的关键特征,并与现实世界系统的演变有着清晰而令人信服的相似之处。但是,在真实的世界系统和它们更易处理的数学模型之间仍然有很大的差距。 该项目的目标之一是通过使用积累的具体数据以及相应的数学模型校准和修改来弥合这一差距。 特别重要的是系统的分析,其中包括异构环境,非局部扩散的影响的理解上的解决方案的行为,并验证这些模型与现实世界的数据。 努力将集中在四个反应-平流-扩散系统的异质性是由于:气候变化的生态背景下,非本地和不对称的信息传播的背景下,骚乱,收入异质性的背景下,社会隔离,和环境异质性,由于特定的集中投入。 该项目的主要目标是了解异质环境和非局部扩散如何影响一般非线性反应扩散方程以及特定生态和社会背景下的解模式。 在整个项目中,研究人员将保持和促进与社会科学家的联系,以便在数学理论和应用之间进行急需的对话。 本计画将著重于发展异质环境中反应-平流-扩散系统之广泛理论,并应用于生态学与社会学。 特别是,这项研究的目标有三个方面:扩展当前的数学理论,在非均匀环境中的局部和非局部反应-平流-扩散系统,以深入了解各种(生态学,社会学和生物学)复杂系统,通过使用这些类型的系统对其进行建模,并采取初步措施,弥合基本数学模型和复杂的现实世界系统之间的差距,他们旨在通过结合使用数据来描述。从定性的角度来看,这项工作将主要涉及探索的影响,各种分散机制的传播(和缺乏)的解决方案在一个异构的环境中:例如,确定传播速度,行波解的存在,脉动前沿,行进脉冲,或广义前沿在异构系统。 此外,还将严格分析这些系统解的全局适定性、中期和长期渐进性以及非平凡稳态解的存在性和唯一性等基本问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nancy Rodriguez其他文献
La construction identitaire chez les jeunes adolescentes à l'ère numérique. Exposition de soi sur Internet, exploration et engagement identitaire
青少年青少年的身份认同在互联网上的探索、参与和认同。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Nancy Rodriguez;Claire Safont;Y. Prêteur - 通讯作者:
Y. Prêteur
Application of Radiology in Management of Incidental Lung Nodule
放射学在偶发肺结节治疗中的应用
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Srikrishna C. Karnatapu;Saloni Doke;Kenneth U. Ekechukwu;Theourrn;Amalathasan;Thebuoshon Amalathasan;Ebuka Ibuoka;Shahrukh Baig;M. Khalid;Cedric Mahailet;Brendon Bachan;Nancy Rodriguez;Ali;Omeishi;Alexander Mair;Mfrekeabasi Enang;A. Patel - 通讯作者:
A. Patel
A 3D particle visualization system for temperature management
用于温度管理的 3D 粒子可视化系统
- DOI:
10.1117/12.872484 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Benoit Lange;Nancy Rodriguez;W. Puech;Herve Rey;Xavier Vasques - 通讯作者:
Xavier Vasques
Expérience scolaire et représentations de soi chez des élèves en situation de handicap
残疾人情况下的学生经验和代表
- DOI:
10.7202/1066868ar - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Émilie Chevallier;Nancy Rodriguez;A. Courtinat - 通讯作者:
A. Courtinat
Identité, représentations de soi et socialisation horizontale chez les adolescentes âgées de 11 à 15 ans pratiquant l'expression de soi sur Internet
11 至 15 岁青少年的身份、社会化水平和互联网社会的实用表达
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Nancy Rodriguez - 通讯作者:
Nancy Rodriguez
Nancy Rodriguez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nancy Rodriguez', 18)}}的其他基金
CAREER: Mathematical Frameworks and Theory for Conceptual Models in Economics, Ecology and Criminology
职业:经济学、生态学和犯罪学概念模型的数学框架和理论
- 批准号:
2042413 - 财政年份:2021
- 资助金额:
$ 3.04万 - 项目类别:
Continuing Grant
Nonlinear and Non-local Models in Social and Ecological Systems
社会和生态系统中的非线性和非局部模型
- 批准号:
1909638 - 财政年份:2019
- 资助金额:
$ 3.04万 - 项目类别:
Continuing Grant
Models for Social, Ecological, and Biological Systems: Narrowing the Gap Between Theory and Applications
社会、生态和生物系统模型:缩小理论与应用之间的差距
- 批准号:
1516778 - 财政年份:2015
- 资助金额:
$ 3.04万 - 项目类别:
Continuing Grant
相似国自然基金
小型类人猿合唱节奏的功能假说——宣
示社会关系(Social bond
advertising) ——验证研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Behavioral Insights on Cooperation in Social Dilemmas
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国优秀青年学者研究基金项目
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
多语言环境下Social Tagging的内涵机理与应用框架研究-基于比较的视角
- 批准号:71103203
- 批准年份:2011
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Design for Sustainability: How Mental Models of Social-Ecological Systems Shape Engineering Design Decisions
可持续性设计:社会生态系统的心理模型如何影响工程设计决策
- 批准号:
2300977 - 财政年份:2023
- 资助金额:
$ 3.04万 - 项目类别:
Continuing Grant
Nonlinear and Non-local Models in Social and Ecological Systems
社会和生态系统中的非线性和非局部模型
- 批准号:
1909638 - 财政年份:2019
- 资助金额:
$ 3.04万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Collaborative Social-Ecological Models for Conservation
博士论文研究:协作社会生态保护模型
- 批准号:
1821288 - 财政年份:2018
- 资助金额:
$ 3.04万 - 项目类别:
Standard Grant
Models for Social, Ecological, and Biological Systems: Narrowing the Gap Between Theory and Applications
社会、生态和生物系统模型:缩小理论与应用之间的差距
- 批准号:
1516778 - 财政年份:2015
- 资助金额:
$ 3.04万 - 项目类别:
Continuing Grant
Applying spatial epidemiology and ecological models to understand the abundance and social organization of folivorous primates
应用空间流行病学和生态模型来了解食叶灵长类动物的丰富度和社会组织
- 批准号:
312106-2011 - 财政年份:2015
- 资助金额:
$ 3.04万 - 项目类别:
Discovery Grants Program - Individual
Applying spatial epidemiology and ecological models to understand the abundance and social organization of folivorous primates
应用空间流行病学和生态模型来了解食叶灵长类动物的丰富度和社会组织
- 批准号:
312106-2011 - 财政年份:2014
- 资助金额:
$ 3.04万 - 项目类别:
Discovery Grants Program - Individual
Applying spatial epidemiology and ecological models to understand the abundance and social organization of folivorous primates
应用空间流行病学和生态模型来了解食叶灵长类动物的丰富度和社会组织
- 批准号:
312106-2011 - 财政年份:2013
- 资助金额:
$ 3.04万 - 项目类别:
Discovery Grants Program - Individual
Applying spatial epidemiology and ecological models to understand the abundance and social organization of folivorous primates
应用空间流行病学和生态模型来了解食叶灵长类动物的丰富度和社会组织
- 批准号:
312106-2011 - 财政年份:2012
- 资助金额:
$ 3.04万 - 项目类别:
Discovery Grants Program - Individual
Applying spatial epidemiology and ecological models to understand the abundance and social organization of folivorous primates
应用空间流行病学和生态模型来了解食叶灵长类动物的丰富度和社会组织
- 批准号:
312106-2011 - 财政年份:2011
- 资助金额:
$ 3.04万 - 项目类别:
Discovery Grants Program - Individual
BE/CNH: Feedbacks Between Complex Ecological and Social Models: Urban Landscape Structure, Nitrogen Flux, Vegetation Management, and Adoption of Design Scenarios
BE/CNH:复杂生态和社会模型之间的反馈:城市景观结构、氮通量、植被管理和设计方案的采用
- 批准号:
0508054 - 财政年份:2005
- 资助金额:
$ 3.04万 - 项目类别:
Standard Grant