Strong Interactions, Topology, and Constraints in Emerging Phases of Matter
物质新兴阶段的强相互作用、拓扑和约束
基本信息
- 批准号:1928166
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports research and education towards understanding the properties of new phases of matter in three dimensions, and the dynamics of low-dimensional quantum systems. One of the frontiers of modern physics is understanding what new types of quantum phenomena can occur in systems with many interacting particles. Striking examples of such phenomena discovered in the 20th century include superfluidity, superconductivity, and the fractional quantum Hall effect, all of which entail macroscopic numbers of interacting particles entering a coherent quantum state. More recently, rapid progress in our understanding of how specific abstract properties (in technical terms, topological properties) of quantum many-particle systems influence their real physical properties has led to the discovery of new classes of materials, such as topological insulators and superconductors. The latter, in particular, have drawn interest as a potential platform for quantum computing, in which information can be stored in a way that is intrinsically robust to random noise.The research focuses on two themes that are of current interest both for expanding our understanding of new types of possible quantum phenomena, and for investigating how strong interactions can potentially help identify promising platforms for quantum computing. The first theme is expanding our understanding of how topological properties can lead to new types of interacting quantum matter in three dimensions. The second theme is understanding how strong interactions, and ultimately the kinds of topological properties that are already well-understood in these systems, help shape how quantum systems evolve in time at finite temperature.The project will contribute to the workforce of highly trained STEM professionals both by training graduate students, and through programs and events coordinated by the PI focused on facilitating the transition of interested physics undergraduate and graduate students at the University of Minnesota to jobs in the private sector. This includes working with engineering departments to allow interested physics undergraduates to participate in senior engineering design projects, as well as helping coordinate extracurricular networking and career-information events aimed specifically at physics students.TECHNICAL SUMMARYThis award supports research and education towards understanding the role of topology and constraints in two areas: new phases of matter in three dimensions, and the dynamics of low-dimensional systems. In the area of phases of matter in three dimensions, the proposed research will focus on recently discovered fracton phases of matter, with the unusual feature that their low-lying excitations have restricted mobility. A combination of field-theoretic techniques and tools for analyzing group cohomology developed in the study of interacting symmetry-protected phases of matter will be used to address the following questions. First, what field theories exhibit the qualitative features of fracton phases? Second, when does symmetry in these and related systems lead to protected gapless boundary modes? Addressing these questions will expand our understanding of how the interplay between geometry and topology in these systems leads to physical properties qualitatively unlike those of other three-dimensional quantum phases.In the area of dynamics in low-dimensional systems, the focus will be on exploring the impact of constraints and topological order on dynamics. The proposed research will use a combination of numerical (exact diagonalization) and analytical approaches based in perturbation theory and random-matrix theory. As low-dimensional systems that approximate constrained systems become experimentally accessible, clarifying whether, when, and how constraints can lead to unusually slow dynamics in quantum many-body systems can significantly advance our understanding of how information can be more robustly stored at intermediate time-scales in quantum many-body systems. The project will contribute to the workforce of highly trained STEM professionals both by training graduate students, and through programs and events coordinated by the PI focused on facilitating the transition of interested physics undergraduate and graduate students at the University of Minnesota to jobs in the private sector. This includes working with engineering departments to allow interested physics undergraduates to participate in senior engineering design projects, as well as helping coordinate extracurricular networking and career-information events aimed specifically at physics students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持研究和教育,以了解三维物质新相的性质,以及低维量子系统的动力学。现代物理学的前沿之一是理解在具有许多相互作用粒子的系统中可能发生的新型量子现象。在20世纪发现的这类现象的突出例子包括超流性、超导性和分数量子霍尔效应,所有这些都需要宏观数量的相互作用粒子进入相干量子态。最近,我们对量子多粒子系统的具体抽象性质(用专业术语来说,拓扑性质)如何影响其真实的物理性质的理解取得了快速进展,导致了新材料类别的发现,如拓扑绝缘体和超导体。特别是后者,作为量子计算的潜在平台引起了人们的兴趣,其中信息可以以一种固有的对随机噪声具有鲁棒性的方式存储。该研究集中在两个主题上,这两个主题是当前感兴趣的,既可以扩展我们对新类型的可能量子现象的理解,也可以调查强相互作用如何可能有助于识别有前途的量子计算平台。第一个主题是扩展我们对拓扑性质如何导致三维空间中新型相互作用量子物质的理解。第二个主题是了解强相互作用以及这些系统中已经很好理解的拓扑性质如何帮助塑造量子系统在有限温度下的时间演化。该项目将通过培训研究生,通过PI协调的项目和活动,重点是促进明尼苏达大学感兴趣的物理本科生和研究生向私人工作的过渡。部门这包括与工程系合作,让感兴趣的物理专业本科生参与高级工程设计项目,以及帮助协调专门针对物理专业学生的课外网络和职业信息活动。技术总结该奖项支持研究和教育,以了解拓扑和约束在两个领域的作用:三维空间中物质的新阶段,以及低维系统的动力学。在三维物质相领域,拟议的研究将集中在最近发现的物质的分形相,其不寻常的特征是它们的低位激发限制了流动性。结合领域理论的技术和工具,用于分析在相互作用的保护阶段的物质的研究中开发的组上同调将被用来解决以下问题。首先,什么场论展示了分形子相的定性特征?第二,在这些系统和相关系统中,对称性何时导致受保护的无隙边界模式? 解决这些问题将扩大我们的理解,如何在这些系统中的几何和拓扑结构之间的相互作用,导致物理性质定性不同于其他三维量子phase.In低维系统的动力学领域,重点将是探索的约束和拓扑秩序对动力学的影响。拟议的研究将使用数值(精确对角化)和分析方法的扰动理论和随机矩阵理论的基础上相结合。随着近似约束系统的低维系统变得可以通过实验获得,澄清约束是否,何时以及如何导致量子多体系统中异常缓慢的动力学可以显着推进我们对量子多体系统中如何在中间时间尺度上更稳健地存储信息的理解。该项目将通过培训研究生,以及通过PI协调的计划和活动,为训练有素的STEM专业人员的劳动力做出贡献,这些计划和活动的重点是促进明尼苏达大学感兴趣的物理本科生和研究生的过渡到私营部门的工作。这包括与工程系合作,让感兴趣的物理本科生参与高级工程设计项目,以及帮助协调专门针对物理学生的课外网络和职业信息活动。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Weak-coupling theory of pair density wave instabilities in transition metal dichalcogenides
- DOI:10.1103/physrevb.107.224516
- 发表时间:2022-09
- 期刊:
- 影响因子:3.7
- 作者:D. Shaffer;F. Burnell;R. Fernandes
- 通讯作者:D. Shaffer;F. Burnell;R. Fernandes
Composing topological domain walls and anyon mobility
- DOI:10.21468/scipostphys.15.3.076
- 发表时间:2022-08
- 期刊:
- 影响因子:5.5
- 作者:Peter Huston;F. Burnell;Corey Jones;David Penneys
- 通讯作者:Peter Huston;F. Burnell;Corey Jones;David Penneys
A multiplayer multiteam nonlocal game for the toric code
用于 toric 代码的多人多团队非本地游戏
- DOI:10.1103/physrevb.107.035409
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Bulchandani, Vir B.;Burnell, Fiona J.;Sondhi, S. L.
- 通讯作者:Sondhi, S. L.
Disordered graphene ribbons as topological multicritical systems
无序石墨烯带作为拓扑多临界系统
- DOI:10.1103/physrevb.106.184206
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Kasturirangan, Saumitran;Kamenev, Alex;Burnell, Fiona J.
- 通讯作者:Burnell, Fiona J.
Playing nonlocal games with phases of quantum matter
玩量子物质相的非局域游戏
- DOI:10.1103/physrevb.107.045412
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Bulchandani, Vir B.;Burnell, Fiona J.;Sondhi, S. L.
- 通讯作者:Sondhi, S. L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fiona Burnell其他文献
Correlated parity measurements as a probe of non-Abelian statistics in one-dimensional superconducting wires
相关宇称测量作为一维超导线中非阿贝尔统计的探针
- DOI:
10.1103/physrevb.89.224510 - 发表时间:
2013 - 期刊:
- 影响因子:3.7
- 作者:
Fiona Burnell - 通讯作者:
Fiona Burnell
Tunable Splitting of the Ground-State Degeneracy in Quasi-One-Dimensional Parafermion Systems.
准一维平副子系统中基态简并的可调谐分裂。
- DOI:
10.1103/physrevlett.116.106405 - 发表时间:
2015 - 期刊:
- 影响因子:8.6
- 作者:
Chun Chen;Fiona Burnell - 通讯作者:
Fiona Burnell
Fiona Burnell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fiona Burnell', 18)}}的其他基金
Exploring Phases of Matter With Restrictive Conservation Laws: Anomalies, Topology, and Dynamics
用限制性守恒定律探索物质相:异常、拓扑和动力学
- 批准号:
2313858 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
CAREER: Topology and Symmetry in Physics Beyond the Landau Paradigm
职业:超越朗道范式的物理学拓扑和对称性
- 批准号:
1352271 - 财政年份:2014
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
相似海外基金
Interactions between geometry, topology, number theory, and dynamics
几何、拓扑、数论和动力学之间的相互作用
- 批准号:
2303572 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Topology, interactions, and disorder in exotic quantum materials
奇异量子材料中的拓扑、相互作用和无序
- 批准号:
RGPAS-2020-00064 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Interactions between topology and geometry in low dimensions
低维拓扑和几何之间的相互作用
- 批准号:
2750813 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Studentship
Interactions between topology, model theory, and operator algebras
拓扑、模型理论和算子代数之间的相互作用
- 批准号:
RGPIN-2021-02459 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Discovery Grants Program - Individual
Topology, interactions, and disorder in exotic quantum materials
奇异量子材料中的拓扑、相互作用和无序
- 批准号:
RGPIN-2020-06999 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Discovery Grants Program - Individual
Interactions between dynamics, topology and combinatorics in low dimensions
低维动力学、拓扑学和组合学之间的相互作用
- 批准号:
2749484 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Studentship
Topology, interactions, and disorder in exotic quantum materials
奇异量子材料中的拓扑、相互作用和无序
- 批准号:
RGPIN-2020-06999 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Discovery Grants Program - Individual
Interactions between geometric group theory and topology
几何群论与拓扑学之间的相互作用
- 批准号:
2625336 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Studentship
Interactions between topology, model theory, and operator algebras
拓扑、模型理论和算子代数之间的相互作用
- 批准号:
RGPIN-2021-02459 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Discovery Grants Program - Individual
Topology, interactions, and disorder in exotic quantum materials
奇异量子材料中的拓扑、相互作用和无序
- 批准号:
RGPAS-2020-00064 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Discovery Grants Program - Accelerator Supplements