Exploring Phases of Matter With Restrictive Conservation Laws: Anomalies, Topology, and Dynamics

用限制性守恒定律探索物质相:异常、拓扑和动力学

基本信息

  • 批准号:
    2313858
  • 负责人:
  • 金额:
    $ 43.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical research with a general goal to understand how constraints in many-particle quantum systems can lead to novel phases of matter and physical phenomena. During the last decade, new experiments have enabled the study of regimes of physics, in which many particles conspire to behave collectively in ways that are very different from the behaviors exhibited by individual atoms. This has allowed physicists to explore a wide range of intriguing phenomena, from synthesizing exotic new kinds of particles, to realizing states of matter that can remember their initial state for an arbitrarily long time (in sharp contrast to the predictions of the laws of thermodynamics).These new experimental capabilities have renewed efforts to understand what kinds of collective behaviors can emerge in quantum many-body systems. Understanding these possibilities has both fundamental implications for expanding our understanding of the world around us, and the potential for practical implications in advancing quantum computing. One part of this project focuses on exploring a new class of such behaviors, that can arise when the microscopic particles undergo motion that is restricted in some way, with the aim of developing new mathematical tools and frameworks to describe them. Such frameworks will enable a more general exploration of what new kinds of physical effects these mobility restrictions can lead to, including their potential for storing quantum information in protected quantum states that are spatially localized near their boundaries. A major challenge in pushing the frontiers of this new generation of experiments is noise: random processes that couple a quantum system to its environment, ultimately destroying the delicate quantum information stored therein. As such, understanding noise in complex, many-body quantum systems has become an increasingly important problem. The second part of this project focuses on understanding how restrictions on particle mobility, as well as related constraints that can be imposed on quantum systems, affect the impact of certain types of noise. The goal of this study is to understand whether, and when, such constraints can lead to quantum phenomena that are unexpectedly robust to noise.This award will also support the PI's education and outreach activities, which consist of (i) modernizing the undergraduate quantum mechanics curriculum and transitioning a special topics course on quantum computation and quantum information designed by the PI to a regular course, (ii) training graduate students in both basic analytical and numerical skills, and (iii) helping coordinate events aimed at attracting women and minorities to the physics major.TECHNICAL SUMMARYThis award supports theoretical research with a general goal to understand how constraints in many-particle quantum systems can lead to novel phases of matter and physical phenomena. Two classes of problems will be investigated. The first consists of understanding the interplay between topology and highly constraining symmetries, such as subsystem symmetry, which requires particle motion to conserve all multipole moments. The PI will (i) explore how anomalies in subsystem symmetries can be used to understand different classes of gapless boundary modes that are known in the literature, and (ii) apply new mathematical tools to study a general construction, known as a topological defect network, that can produce a wide array of subsystem-symmetric models in 2 dimensions. This research may also have implications for understanding phases with less stringent symmetry constraints, such as conserved dipole (but not higher multipole) moments, that may lead to experimentally verifiable predictions, as global dipole symmetry arises naturally, for example, in some cold atomic systems. The second class of questions to be explored is how constraints impact the dynamics of open quantum systems. A particular focus is on understanding when slow dynamics can arise, such that quantum coherence can be preserved for an unexpectedly long time. Here, the PI will explore the impact of constraints on dynamics by developing a modified Lindblad formalism for Hilbert spaces with local constraints. This formalism can be used to study open system dynamics in a variety of cases where constraints are known to lead to atypical Hamiltonian dynamics, such as Hilbert space shattering and approximate quantum scars.This award will also support the PI's education and outreach activities, which consist of (i) modernizing the undergraduate quantum mechanics curriculum and transitioning a special topics course on quantum computation and quantum information designed by the PI to a regular course, (ii) training graduate students in both basic analytical and numerical skills, and (iii) helping coordinate events aimed at attracting women and minorities to the physics major.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持理论研究,其总体目标是了解多粒子量子系统中的约束如何导致物质和物理现象的新阶段。在过去的十年里,新的实验使得对物理体系的研究成为可能,在物理体系中,许多粒子合谋以与单个原子所表现出的行为截然不同的方式集体行为。这使得物理学家可以探索各种有趣的现象,从合成奇异的新粒子,到实现可以在任意长时间内记住其初始状态的物质状态(与热力学定律的预测形成鲜明对比)。这些新的实验能力使人们重新努力去理解量子多体系统中会出现什么样的集体行为。理解这些可能性不仅对扩大我们对周围世界的理解具有根本意义,而且对推进量子计算具有潜在的实际意义。这个项目的一部分重点是探索一类新的行为,当微观粒子在某种程度上受到限制的运动时,可能会出现这种行为,目的是开发新的数学工具和框架来描述它们。这样的框架将使人们能够更广泛地探索这些移动性限制可能导致的新型物理效应,包括它们将量子信息存储在边界附近空间定位的受保护量子态中的潜力。推动新一代实验前沿的一个主要挑战是噪声:将量子系统与其环境耦合在一起的随机过程,最终破坏了存储在其中的微妙量子信息。因此,理解复杂的多体量子系统中的噪声已成为一个日益重要的问题。该项目的第二部分侧重于理解粒子迁移率的限制,以及可以施加在量子系统上的相关限制,如何影响某些类型的噪声的影响。这项研究的目的是了解这些限制是否以及何时会导致量子现象对噪声具有意想不到的鲁棒性。该奖项还将支持PI的教育和推广活动,其中包括(i)使本科量子力学课程现代化,并将PI设计的量子计算和量子信息专题课程转变为常规课程,(ii)培养研究生的基本分析和数值技能,以及(iii)帮助协调旨在吸引女性和少数民族学习物理专业的活动。该奖项支持理论研究,其总体目标是了解多粒子量子系统中的约束如何导致物质和物理现象的新阶段。我们将研究两类问题。首先是理解拓扑结构和高度约束对称性之间的相互作用,例如子系统对称性,这需要粒子运动来保持所有的多极矩。PI将(i)探索如何使用子系统对称性中的异常来理解文献中已知的不同类别的无间隙边界模式,以及(ii)应用新的数学工具来研究称为拓扑缺陷网络的一般结构,该结构可以在二维中产生广泛的子系统对称模型。这项研究也可能对理解不那么严格的对称约束的相有启示,例如守恒偶极矩(但不是更高的多极矩),这可能导致实验可验证的预测,因为全局偶极对称自然产生,例如,在一些冷原子系统中。要探索的第二类问题是约束如何影响开放量子系统的动力学。一个特别的焦点是理解什么时候会出现慢动力学,这样量子相干性就可以保持很长一段时间。在这里,PI将通过开发具有局部约束的希尔伯特空间的改进Lindblad形式来探索约束对动力学的影响。这种形式可以用于研究开放系统动力学在各种情况下,其中已知的约束导致非典型哈密顿动力学,如希尔伯特空间破碎和近似量子伤痕。该奖项还将支持PI的教育和推广活动,其中包括(i)使本科量子力学课程现代化,并将PI设计的量子计算和量子信息专题课程转变为常规课程,(ii)培养研究生的基本分析和数值技能,以及(iii)帮助协调旨在吸引女性和少数民族学习物理专业的活动。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fiona Burnell其他文献

Correlated parity measurements as a probe of non-Abelian statistics in one-dimensional superconducting wires
相关宇称测量作为一维超导线中非阿贝尔统计的探针
  • DOI:
    10.1103/physrevb.89.224510
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Fiona Burnell
  • 通讯作者:
    Fiona Burnell
Tunable Splitting of the Ground-State Degeneracy in Quasi-One-Dimensional Parafermion Systems.
准一维平副子系统中基态简并的可调谐分裂。
  • DOI:
    10.1103/physrevlett.116.106405
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Chun Chen;Fiona Burnell
  • 通讯作者:
    Fiona Burnell

Fiona Burnell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fiona Burnell', 18)}}的其他基金

Strong Interactions, Topology, and Constraints in Emerging Phases of Matter
物质新兴阶段的强相互作用、拓扑和约束
  • 批准号:
    1928166
  • 财政年份:
    2019
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant
CAREER: Topology and Symmetry in Physics Beyond the Landau Paradigm
职业:超越朗道范式的物理学拓扑和对称性
  • 批准号:
    1352271
  • 财政年份:
    2014
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Zintl Phases点缺陷结构与热电性能调控
  • 批准号:
    51771105
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Aspen Winter Conference: Disorder and Quantum Phases of Matter
会议:阿斯彭冬季会议:物质的无序和量子相
  • 批准号:
    2409357
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
Braided tensor categories, higher Picard groups, and classification of topological phases of matter
辫状张量类别、高皮卡德群以及物质拓扑相的分类
  • 批准号:
    2302267
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
Novel Phases of Quantum Matter in Numerical Simulations, Field Theory and Materials
数值模拟、场论和材料中量子物质的新相
  • 批准号:
    2312742
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant
RUI: Investigating Phases of Cosmic Matter with Neutron Star Seismology
RUI:用中子星地震学研究宇宙物质的相
  • 批准号:
    2310003
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
CAREER: From Equivariant Chromatic Homotopy Theory to Phases of Matter: Voyage to the Edge
职业生涯:从等变色同伦理论到物质相:走向边缘的航程
  • 批准号:
    2143811
  • 财政年份:
    2022
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant
Topological phases of matter for quantum computation
用于量子计算的物质拓扑相
  • 批准号:
    DE220100625
  • 财政年份:
    2022
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Discovery Early Career Researcher Award
Active Matter Phases and Phase Transitions in a Model Social Bacterium
社会细菌模型中的活性物质相和相变
  • 批准号:
    2210346
  • 财政年份:
    2022
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant
Quantum Symmetries of Topological Phases of Matter
物质拓扑相的量子对称性
  • 批准号:
    2205962
  • 财政年份:
    2022
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
Electronic phases and transport in quantum matter at strong coupling
强耦合下量子物质中的电子相和输运
  • 批准号:
    2203411
  • 财政年份:
    2022
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant
Quantum Field Theory for Topological Phases of Matter
物质拓扑相的量子场论
  • 批准号:
    2210182
  • 财政年份:
    2022
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了