Ultra-fast transient cell adhesion and its application for high-throughput microfluidic cell sorting
超快速瞬时细胞粘附及其在高通量微流控细胞分选中的应用
基本信息
- 批准号:1928262
- 负责人:
- 金额:$ 52.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Biological cells use various adhesion molecules on their surfaces to interact with each other and their environment. The type, amount, and combination of these adhesion molecules, which carry important information about specific cell conditions, can be used to characterize cells and diagnose disease. Sorting and separating cells based on their expressions of adhesion molecules are critical steps in many biomedical assays. Current cell sorting approaches use tags that bind to cells expressing specific adhesion molecules. These attached tags enable high purity sorting, but the tags can alter cell state and can lead to unwanted cell activation preventing further use of the labeled cells. This project will develop a microfluidic technology that enables rapid and efficient sorting of biological cells based on the expression of adhesion molecules without the use of any tags or labels. The technology utilizes a microfluidic channel with periodic constrictions coated with molecules that briefly interact adhesion molecules on the cells' surfaces. The interaction causes a change in the trajectories of the cells of interest without inducing unwanted activation. The project will investigate the mechanics of cell interactions within the microchannel and will probe the use of this microfluidic separation technique to isolate lymphocytes with highly specific adhesion molecules that can be used in cancer therapies. The research will involve undergraduate and graduate students, and the team will conduct several outreach activities to students at all levels, including developing projects for science and engineering competitions.This project will develop a microfluidic approach for high-throughput, label-free cell sorting and separation based on the affinity of molecular surface markers for target ligands. Identifying and isolating cells that express desired molecular surface markers are required in a variety of applications in the biological sciences, cell therapy, and medical diagnostics. The project will integrate microfluidic experiments and computer simulations to examine transient adhesion of biological cells at ultrafast time scales that have not yet been explored. Cells will be propelled through a microfluidic channel decorated with diagonal ridges that slightly compress the cells to promote binding between adhesion molecules and ligands covering the microchannel surfaces. The binding events alter cell trajectories in the microchannel characterizing cell adhesion. The short contact time between cells and microchannel surfaces will prevent unwanted cell activation. The project will systematically probe effects of confinement on transient cell adhesion for a wide range of time scales. Furthermore, the project will employ the microfluidic cell sorting technique to examine T cell selectivity to target antigens, which is important in clinical applications, without activating the cells. Positive and negative selection to T cell neoantigens will be investigated to identify disease-selective T cells. The results of this research project, a new microfluidic method for high-throughput label-free cell separation, will have broad implications in medical diagnostics, therapeutics, cell engineering, and cell manufacturing. Furthermore, the microfluidic method can enable direct measurements of transient interactions between important physiological ligands and adhesive cell molecules that will benefit the development of novel diagnostic methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物细胞利用其表面的各种黏附分子相互作用,并与环境相互作用。这些黏附分子的类型、数量和组合携带着关于特定细胞条件的重要信息,可以用来描述细胞的特征和诊断疾病。根据细胞黏附分子的表达来分选和分离细胞是许多生物医学分析中的关键步骤。目前的细胞分选方法使用与表达特定黏附分子的细胞结合的标签。这些附加的标签可以实现高纯度的分选,但标签可能会改变细胞状态,并可能导致不想要的细胞激活,阻止进一步使用标记的细胞。该项目将开发一种微流控技术,能够在不使用任何标签或标签的情况下,根据黏附分子的表达对生物细胞进行快速有效的分选。这项技术利用了一种带有周期性狭窄的微流体通道,上面覆盖着分子,这些分子在细胞表面短暂地与黏附分子相互作用。相互作用导致感兴趣细胞的轨迹改变,而不会引起不想要的激活。该项目将研究微通道内细胞相互作用的机制,并将探索使用这种微流控分离技术来分离具有高度特异性黏附分子的淋巴细胞,这些淋巴细胞可用于癌症治疗。这项研究将涉及本科生和研究生,该团队将向各级学生开展几项外展活动,包括开发科学和工程竞赛项目。该项目将开发一种基于分子表面标记对目标配体的亲和力的高通量、无标记细胞分选和分离的微流控方法。鉴定和分离表达所需分子表面标记的细胞在生物科学、细胞治疗和医学诊断中的各种应用中都是必需的。该项目将结合微流体实验和计算机模拟,在尚未探索的超快时间尺度上检查生物细胞的瞬时黏附。细胞将被推进通过装饰有对角脊的微流体通道,该通道略微压缩细胞,以促进黏附分子与覆盖微通道表面的配体之间的结合。结合事件改变了微通道中表征细胞黏附的细胞轨迹。细胞和微通道表面之间的短接触时间将防止不必要的细胞激活。该项目将在广泛的时间范围内系统地探索限制对瞬时细胞黏附的影响。此外,该项目将使用微流控细胞分选技术来检测T细胞对靶抗原的选择性,这在临床应用中是重要的,而不会激活细胞。将研究对T细胞新抗原的阳性和阴性选择,以鉴定疾病选择性T细胞。这一研究项目的结果将在医学诊断、治疗、细胞工程和细胞制造方面具有广泛的意义,是一种高通量无标记细胞分离的新方法。此外,微流控方法可以直接测量重要的生理配体和黏附细胞分子之间的瞬时相互作用,这将有助于开发新的诊断方法。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inertial migration of spherical particles in channel flow of power law fluids
- DOI:10.1063/5.0013725
- 发表时间:2020-08-01
- 期刊:
- 影响因子:4.6
- 作者:Chrit, Fatima Ezahra;Bowie, Samuel;Alexeev, Alexander
- 通讯作者:Alexeev, Alexander
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Alexeev其他文献
A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method
量子格子玻尔兹曼方法减少量子资源的双电路方法
- DOI:
10.48550/arxiv.2401.12248 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sriharsha Kocherla;Austin Adams;Zhixin Song;Alexander Alexeev;S. Bryngelson - 通讯作者:
S. Bryngelson
Evaporation of Falling and Shear-Driven Thin Films on Smooth and Grooved Surfaces
光滑和凹槽表面上落下和剪切驱动薄膜的蒸发
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Klaus Helbig;Alexander Alexeev;T. Gambaryan;Peter Stephan - 通讯作者:
Peter Stephan
A multiple-circuit approach to quantum resource reduction with application to the quantum lattice Boltzmann method
用于量子资源减少的多回路方法及其在量子格子玻尔兹曼方法中的应用
- DOI:
10.1016/j.future.2025.107975 - 发表时间:
2026-01-01 - 期刊:
- 影响因子:6.100
- 作者:
Melody Lee;Zhixin Song;Sriharsha Kocherla;Austin Adams;Alexander Alexeev;Spencer H. Bryngelson - 通讯作者:
Spencer H. Bryngelson
Alexander Alexeev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Alexeev', 18)}}的其他基金
Understanding swimming hydrodynamics of elastic propulsors with tapered thickness
了解具有锥形厚度的弹性推进器的游泳流体动力学
- 批准号:
2217647 - 财政年份:2022
- 资助金额:
$ 52.29万 - 项目类别:
Standard Grant
Collaborative Research: Understanding emergent collective biophysical behavior of platelets in blood clotting
合作研究:了解血小板在血液凝固中的集体生物物理行为
- 批准号:
1809227 - 财政年份:2018
- 资助金额:
$ 52.29万 - 项目类别:
Continuing Grant
I-Corps: Microfluidic platform for cell characterization and modification
I-Corps:用于细胞表征和修饰的微流控平台
- 批准号:
1829123 - 财政年份:2018
- 资助金额:
$ 52.29万 - 项目类别:
Standard Grant
Understanding 3D hydrodynamics of active electroelastic materials in complex multimodal motion
了解复杂多模态运动中活性电弹性材料的 3D 流体动力学
- 批准号:
1705739 - 财政年份:2017
- 资助金额:
$ 52.29万 - 项目类别:
Standard Grant
CAREER: Mesoscale Modeling of Soft Polymer Networks
职业:软聚合物网络的介观建模
- 批准号:
1255288 - 财政年份:2013
- 资助金额:
$ 52.29万 - 项目类别:
Continuing Grant
2012 MRS Fall Meeting Symposium on Bioinspired Directional Surfaces: From Nature to Engineered Textured Surfaces
2012 年 MRS 秋季会议仿生定向表面研讨会:从自然到工程纹理表面
- 批准号:
1250333 - 财政年份:2012
- 资助金额:
$ 52.29万 - 项目类别:
Standard Grant
EAGER: Microfluidic platform for regulating transport in particle suspensions using synthetic cilia
EAGER:使用合成纤毛调节颗粒悬浮液运输的微流体平台
- 批准号:
1256403 - 财政年份:2012
- 资助金额:
$ 52.29万 - 项目类别:
Standard Grant
相似国自然基金
基于FAST搜寻及观测的脉冲星多波段辐射机制研究
- 批准号:12403046
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:青年科学基金项目
FAST连续观测数据处理的pipeline开发
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于神经网络的FAST馈源融合测量算法研究
- 批准号:12363010
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
使用FAST开展河外中性氢吸收线普查
- 批准号:12373011
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
- 批准号:12373107
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
基于FAST观测的重复快速射电暴的统计和演化研究
- 批准号:12303042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用FAST漂移扫描多科学目标同时巡天宽带谱线数据研究星系中性氢质量函数
- 批准号:12373012
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于FAST望远镜及超级计算的脉冲星深度搜寻和研究
- 批准号:12373109
- 批准年份:2023
- 资助金额:55.00 万元
- 项目类别:面上项目
基于FAST高灵敏度和高谱分辨中性氢数据的暗星系的系统搜寻与研究
- 批准号:12373001
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于FAST的纳赫兹引力波研究
- 批准号:LY23A030001
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Realization of the ultra-fast Thomson scattering system for transient and abrupt phenomena in fusion plasma
聚变等离子体瞬态突变现象超快汤姆逊散射系统的实现
- 批准号:
23H01162 - 财政年份:2023
- 资助金额:
$ 52.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fast Transient Study with Deep-Imaging Surveys and Synergistic Observations
通过深度成像调查和协同观测进行快速瞬态研究
- 批准号:
22K14069 - 财政年份:2022
- 资助金额:
$ 52.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Fast Transients, Superflares and Exoplanet Habitability: Exploring the Minute-Cadence Sky with the Evryscope Fast Transient Engine
快速瞬变、超级耀斑和系外行星宜居性:使用 Evryscope 快速瞬变引擎探索分钟节奏的天空
- 批准号:
2009645 - 财政年份:2020
- 资助金额:
$ 52.29万 - 项目类别:
Standard Grant
AMPS: Collaborative Research: Efficient Algorithms for Ultra-Fast Detection of Power System Contingencies in the Transient Regime
AMPS:协作研究:瞬态状态下电力系统突发事件超快速检测的高效算法
- 批准号:
1736454 - 财政年份:2018
- 资助金额:
$ 52.29万 - 项目类别:
Continuing Grant
AMPS: Collaborative Research: Efficient Algorithms for Ultra-Fast Detection of Power System Contingencies in the Transient Regime
AMPS:协作研究:瞬态状态下电力系统突发事件超快速检测的高效算法
- 批准号:
1736437 - 财政年份:2018
- 资助金额:
$ 52.29万 - 项目类别:
Continuing Grant
Fast Kinetics Studies of the Reactivity of Transient Stannylenes
瞬态亚锡反应活性的快速动力学研究
- 批准号:
509745-2017 - 财政年份:2017
- 资助金额:
$ 52.29万 - 项目类别:
University Undergraduate Student Research Awards
Study of transient plasma physics by fast Thomson scattering system(Fostering Joint International Research)
利用快速汤姆逊散射系统研究瞬态等离子体物理(促进国际联合研究)
- 批准号:
15KK0245 - 财政年份:2016
- 资助金额:
$ 52.29万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Phasor measurement unit and fast transient recorder
相量测量单元和快速瞬态记录仪
- 批准号:
486338-2015 - 财政年份:2016
- 资助金额:
$ 52.29万 - 项目类别:
Collaborative Research and Development Grants
Phasor measurement unit and fast transient recorder
相量测量单元和快速瞬态记录仪
- 批准号:
486338-2015 - 财政年份:2015
- 资助金额:
$ 52.29万 - 项目类别:
Collaborative Research and Development Grants
Evaluation of transient plasma phenomenon by the fast Thomson scattering measurement
通过快速汤姆逊散射测量评估瞬态等离子体现象
- 批准号:
26709072 - 财政年份:2014
- 资助金额:
$ 52.29万 - 项目类别:
Grant-in-Aid for Young Scientists (A)