AMPS: Collaborative Research: Efficient Algorithms for Ultra-Fast Detection of Power System Contingencies in the Transient Regime
AMPS:协作研究:瞬态状态下电力系统突发事件超快速检测的高效算法
基本信息
- 批准号:1736437
- 负责人:
- 金额:$ 2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The stability of the electric power system is of the utmost importance for its reliable operation. This work focuses on the impact of large disturbances, such as the loss of a transmission line due to a short-circuit, or the sudden disconnection of a thermal generating unit due to an unpredictable malfunction. When such faults occur, the system undergoes a transient event of highly nonlinear nature. The ongoing large-scale integration of renewable energy resources in the grid challenges conventional transient stability analysis, and reduces the 'inertia' of the system. At the same time, there is a proliferation of phasor measurement units (PMUs) on the grid. These sensors provide accurate, high-frequency information about voltage, current, and frequency at various locations around the system, and are instrumental in increasing our system-level situation awareness. Nevertheless, the transformation of the incoming data to actionable information is still an open research problem. In the context of transient regimes, it is important to establish as soon as possible, i.e., within a few electrical cycles, what has gone wrong, in order to predict the evolution of the system dynamics over the period of time following the fault. Such 'ultra-fast' detection is critical, since it may allow appropriate actions to be taken by a wide-area monitoring and control system that can actuate various assets around the grid, such as flexible ac transmission system (FACTS) devices or even the converters of renewable resources.The main objective of this work is to develop computationally scalable, yet statistically efficient, real-time algorithms in order to detect and identify contingencies in the early stages of the transient regime of the power system based on PMU outputs. The validity and efficacy of these algorithms will be based on a stochastic model for the power system during the transient stability regime following a contingency. This is a very challenging problem that cannot be addressed with existing uncertainty propagation methodologies, because of the high-dimensionality and the computational complexity of the power grid dynamical system. A key component is the reformulation of the uncertainty propagation problem which overcomes the curse of dimensionality, enables the fast re-estimation of the statistics as the power system operating point changes, and allows for the adaptive selection of power system simulations. This work will rely on combination of diverse techniques, such as uncertainty quantification, power grid modeling, and sequential detection.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电力系统的稳定性对电力系统的可靠运行至关重要。这项工作的重点是大干扰的影响,如传输线的损失,由于短路,或突然断开的火力发电机组由于不可预测的故障。当这种故障发生时,系统经历高度非线性性质的瞬态事件。 可再生能源在电网中的大规模整合对传统的暂态稳定分析提出了挑战,并降低了系统的“惯性”。与此同时,电网上的相量测量单元(PMU)激增。这些传感器提供有关系统周围各个位置的电压、电流和频率的准确高频信息,有助于提高我们的系统级态势感知能力。然而,输入数据的可操作的信息的转换仍然是一个开放的研究问题。在过渡时期,必须尽快建立,在几个电周期内,什么出了问题,以便预测故障后一段时间内系统动态的演变。这种“超快”检测是至关重要的,因为它可以允许广域监测和控制系统采取适当的行动,该广域监测和控制系统可以驱动电网周围的各种资产,例如灵活交流输电系统(FACTS)设备或甚至可再生资源的转换器。实时算法,以检测和识别基于PMU输出的电力系统暂态状态的早期阶段的意外事故。这些算法的有效性和功效将基于一个随机模型的电力系统在暂态稳定政权以下的意外。 这是一个非常具有挑战性的问题,不能解决与现有的不确定性传播方法,因为高的维数和计算复杂性的电网动态系统。一个关键的组成部分是不确定性传播问题,克服了灾难的维数,使快速重新估计的统计数据的电力系统工作点的变化,并允许自适应选择电力系统模拟的重新制定。 这项工作将依赖于多种技术的组合,如不确定性量化,电网建模和顺序检测。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilias Bilionis其他文献
Data Driven Modeling of Turbocharger Turbine using Koopman Operator
使用 Koopman 算子对涡轮增压器涡轮进行数据驱动建模
- DOI:
10.48550/arxiv.2204.10421 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shrenik Zinage;Suyash Jadhav;Yifei Zhou;Ilias Bilionis;P. Meckl - 通讯作者:
P. Meckl
Unbalanced optimal transport for stochastic particle tracking
随机粒子跟踪的不平衡最优传输
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kairui Hao;Atharva Hans;P. Vlachos;Ilias Bilionis - 通讯作者:
Ilias Bilionis
Optimizing autoinjector devices using physics-based simulations and Gaussian processes.
使用基于物理的模拟和高斯过程优化自动注射器设备。
- DOI:
10.1016/j.jmbbm.2023.105695 - 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
V. Sree;Xiaoxu Zhong;Ilias Bilionis;A. Ardekani;A. B. Tepole - 通讯作者:
A. B. Tepole
Role of Cyber-Physical Testing in Developing Resilient Extraterrestrial Habitats
网络物理测试在开发有弹性的外星栖息地中的作用
- DOI:
10.1061/9780784483374.098 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
A. Maghareh;A. Lenjani;Murali Krishnan;S. Dyke;Ilias Bilionis - 通讯作者:
Ilias Bilionis
Signed Distance Function-Based Analytical Modeling of Electric Machine Geometry
基于符号距离函数的电机几何分析建模
- DOI:
10.1109/peci61370.2024.10525252 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Andrés Beltrán;Raquel Sandoval;Ilias Bilionis;Dionysios Aliprantis - 通讯作者:
Dionysios Aliprantis
Ilias Bilionis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilias Bilionis', 18)}}的其他基金
A Theoretical Framework for Understanding Strategic Behavior in Systems Engineering
理解系统工程中战略行为的理论框架
- 批准号:
1728165 - 财政年份:2017
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
- 批准号:
2229011 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229345 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
- 批准号:
2229012 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:
2229074 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:
2229073 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:
2229075 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229344 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Collaborative Research: AMPS Stochastic Algorithms for Early Detection and Risk Prediction of Hidden Contingencies in Modern Power Systems
合作研究:用于现代电力系统中隐藏突发事件的早期检测和风险预测的 AMPS 随机算法
- 批准号:
2229108 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Robust Failure Probability Minimization for Grid Operational Planning with Non-Gaussian Uncertainties
合作研究:AMPS:具有非高斯不确定性的电网运行规划的鲁棒故障概率最小化
- 批准号:
2229408 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Robust Failure Probability Minimization for Grid Operational Planning with Non-Gaussian Uncertainties
合作研究:AMPS:具有非高斯不确定性的电网运行规划的鲁棒故障概率最小化
- 批准号:
2229409 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Standard Grant