More efficient electrochemical energy conversion through near-wall flow control

通过近壁流量控制实现更高效的电化学能量转换

基本信息

  • 批准号:
    239325001
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Independent Junior Research Groups
  • 财政年份:
    2013
  • 资助国家:
    德国
  • 起止时间:
    2012-12-31 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The demand for energy is growing continuously due to the rising world population and the industrialization of emerging economies. An increasing part of this demand has to be produced using regenerative energy sources. Some of these sources, such as wind power and sunlight are not continuously available. Thus, the efficient energy storage is of great importance. Especially the electro chemical energy conversion in fuel cells or cells for electrolysis plays an important role. Since the reaction in these devices takes place at the electrodes surface, microfluidic solutions seem to be favourable. The surface can be largely increased by keeping the necessary volume small. The connection in series of plenty such microfluidic fuel cells can be used to establish the necessary power. The aim of the proposed project is to increase the efficiency of the electro chemical energy conversion by the application of near wall flow control and to understand the underlying physical phenomena in order to improve the design of future devices. Therefore measurements of the velocity field and scalar distributions of temperature, pH-value and pressure with high spatial and temporal resolution will be applied in single and multiphase micro flows. The proposed project focusses on the control of the near wall convection by the application of electromagnetic volume forces in multiphase systems and the flow control via passive secondary flows for single phase systems.One goal is the development of a microfluidic fuels cell in which the fuel and the oxidant flow next to each other without convective mixing. Therefore the expensive membrane of conventional fuel cell is not necessary. The efficiency of such a microfluidic fuel cell shall be enhanced using convection due to secondary flows which removes the depletion layer from the electrodes and refreshes the solution. Another goal is the investigation of the flow around single hydrogen bubbles produced on a macroscopic electrode mimicking a real electrolyser. Therefore highly resolved measurements of the velocity and the temperature will be performed with and without the application of Lorentz forces. Furthermore, a Marangoni convection was seen for the first time during water electrolysis on microelectrodes and further measurements on macroscopic electrodes on single hydrogen bubbles shall help to investigate if the origin of this phenomenon is related to temperature or concentration gradients.
由于世界人口的增加和新兴经济体的工业化,对能源的需求不断增长。越来越多的这种需求必须使用可再生能源来生产。其中一些能源,如风力和阳光,并不是持续可用的。因此,有效的能量存储是非常重要的。特别是电化学能量转换在燃料电池或电解电池中起着重要的作用。由于这些装置中的反应发生在电极表面,因此微流体溶液似乎是有利的。通过保持必要的小体积,可以大大增加表面。大量这种微流体燃料电池的串联连接可用于建立必要的电力。该项目的目的是通过应用近壁流动控制来提高电化学能量转换的效率,并了解潜在的物理现象,以改进未来设备的设计。因此,具有高空间和时间分辨率的速度场和温度、pH值和压力的标量分布的测量将应用于单相和多相微流。该项目的重点是通过在多相系统中应用电磁体积力来控制近壁对流,以及通过单相系统的被动二次流来控制流动,其中一个目标是开发一种微流体燃料电池,其中燃料和氧化剂彼此相邻流动而没有对流混合。因此,传统燃料电池的昂贵的膜是不必要的。这种微流体燃料电池的效率应使用由于二次流而产生的对流来增强,二次流从电极去除耗尽层并更新溶液。另一个目标是研究模拟真实的电解槽的宏观电极上产生的单个氢气泡周围的流动。因此,高分辨率的速度和温度的测量将进行与没有应用洛仑兹力。此外,Marangoni对流被认为是第一次在水电解过程中的微电极和宏观电极上的单个氢气泡的进一步测量将有助于调查,如果这种现象的起源是与温度或浓度梯度。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Near-wall measurements of the bubble- and Lorentz-force-driven convection at gas-evolving electrodes
  • DOI:
    10.1007/s00348-015-2029-0
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Baczyzmalski, Dominik;Weier, Tom;Cierpka, Christian
  • 通讯作者:
    Cierpka, Christian
Marangoni convection at electrogenerated hydrogen bubbles.
  • DOI:
    10.1039/c8cp01050a
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xuegeng Yang;D. Baczyzmalski;C. Cierpka;G. Mutschke;K. Eckert
  • 通讯作者:
    Xuegeng Yang;D. Baczyzmalski;C. Cierpka;G. Mutschke;K. Eckert
A volumetric temperature and velocity measurement technique for microfluidics based on luminescence lifetime imaging
  • DOI:
    10.1007/s00348-018-2616-y
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Massing, Julian;Kaehler, Christian J.;Cierpka, Christian
  • 通讯作者:
    Cierpka, Christian
A fast start up system for microfluidic direct methanol fuel cells
  • DOI:
    10.1016/j.ijhydene.2019.08.107
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    J. Massing;N. van der Schoot;C. Kähler;C. Cierpka
  • 通讯作者:
    J. Massing;N. van der Schoot;C. Kähler;C. Cierpka
Passive control of the concentration boundary layer in microfluidic fuel cells using Dean vortices
  • DOI:
    10.1007/s10404-019-2274-2
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Wiebke Rösing;T. Schildhauer;J. König;C. Cierpka
  • 通讯作者:
    Wiebke Rösing;T. Schildhauer;J. König;C. Cierpka
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Christian Cierpka其他文献

Professor Dr.-Ing. Christian Cierpka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Christian Cierpka', 18)}}的其他基金

Spreading of aerosols in mixed convection in a generic passenger cabin
普通客舱内混合对流气溶胶的传播
  • 批准号:
    468826999
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Simultaneous volumetric measurement of the velocity and temperature field in Rayleigh-Bénard cells with large aspect ratio
大纵横比瑞利-伯纳德池中速度场和温度场的同时体积测量
  • 批准号:
    429328691
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Combined investigations on the temperature and flow field on an acoustically-driven microfluidic 2D-single cell per well analysis system
声驱动微流控二维单细胞每孔分析系统的温度和流场联合研究
  • 批准号:
    417890455
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Multidimensional particle fractioning using surface acoustic waves
使用表面声波进行多维颗粒分级
  • 批准号:
    444806275
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Parasitic heat transport in thermal energy storage for Carnot batteries
卡诺电池热能存储中的寄生热传输
  • 批准号:
    525893212
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

eStructMR - Engineering Electrochemical Structured Membrane Reactor for Efficient Co-valorisation of Methane and Carbon Dioxide
eStructMR - 用于甲烷和二氧化碳高效共价的工程电化学结构膜反应器
  • 批准号:
    EP/Y028228/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Efficient hydrogen separation using proton-conducting ceramic membranes and electrochemical cells
使用质子传导陶瓷膜和电化学电池进行高效氢分离
  • 批准号:
    2749539
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Efficient and Scalable Electrochemical Conversion of Carbon Dioxide to Ethylene
二氧化碳高效且可扩展的电化学转化为乙烯
  • 批准号:
    547308-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Design, Program, Evolve: Engineering efficient electrochemical devices for a net-zero world
设计、编程、进化:为净零世界设计高效电化学装置
  • 批准号:
    EP/W03395X/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Electrochemical CO2 reduction for efficient utilization of green NH3
电化学 CO2 还原,高效利用绿色 NH3
  • 批准号:
    22K19042
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
A new prepartion method for efficient metal-complex/semiconductor hybrid photocatalysts using electrochemical polymerization reactions
利用电化学聚合反应制备高效金属配合物/半导体杂化光催化剂的新方法
  • 批准号:
    22K14715
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Efficient and Scalable Electrochemical Conversion of Carbon Dioxide to Ethylene
二氧化碳高效且可扩展的电化学转化为乙烯
  • 批准号:
    547308-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Efficient photovoltaic-electrochemical water splitting for clean hydrogen
高效光伏电化学水分解产生清洁氢
  • 批准号:
    DP200103420
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Efficient and Scalable Electrochemical Conversion of Carbon Dioxide to Ethylene
二氧化碳高效且可扩展的电化学转化为乙烯
  • 批准号:
    547308-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Novel Manufacturing for Resource Efficient Electrochemical Storage (NoRESt)
资源高效电化学存储的新型制造(NoRESt)
  • 批准号:
    EP/S03711X/1
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了