Computational methods for abelian varieties over number fields with complex multiplication
复数乘法数域上阿贝尔簇的计算方法
基本信息
- 批准号:239459353
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational arithmetic geometry and its related areas generalize considerably both importance and techniques of classical computational number theory. The introduction of algebraic curves to cryptography emphasized that arithmetic geometry possesses not only an extremely interesting theoretical value that is rapidly growing; it also provides us with an exciting computational side. Many questions are still unsolved and need more investigation. This project is concerned with explicit algorithmic problems in the arithmetic of abelian varieties over number fields with complex multiplication. There are a multitude of recent numerical results for dimension one abelian varieties with complex multiplication, also motivated from applications to cryptography. We wish to solve various problems for low dimensional abelian varieties with complex multiplication, both algorithmically and theoretically. This includes the following topics: Torsion points of abelian varieties with CM over finite fields, small invariants and explicit class field theory, construction of curves for pairing-based cryptography, investigation of the Igusa-invariants, efficient algorithms and explicit implementation of new methods.
计算算术几何及其相关领域在很大程度上概括了经典计算数论的重要性和技术。将代数曲线引入密码学强调了算术几何不仅具有非常有趣的理论价值,而且还为我们提供了令人兴奋的计算方面。许多问题仍然没有解决,需要更多的调查。本课题研究数域上交换簇的复数乘法运算中的显式算法问题。最近有大量的数值结果,一维阿贝尔簇与复数乘法,也从应用到密码学的动机。我们希望解决各种问题的低维阿贝尔品种与复杂的乘法,算法和理论。这包括以下主题:扭点的阿贝尔品种与CM在有限领域,小不变量和明确的类域理论,建设曲线对为基础的密码学,调查的Igusa不变量,有效的算法和明确实施的新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Andreas Stein其他文献
Professor Dr. Andreas Stein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
- 批准号:
2750689 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Studentship
Developing behavioural methods to assess pain in horses
开发评估马疼痛的行为方法
- 批准号:
2686844 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Studentship
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
- 批准号:
2348712 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
- 批准号:
DE240100316 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
- 批准号:
EP/Z532976/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Development and Translation Mass Spectrometry Methods to Determine BioMarkers for Parkinson's Disease and Comorbidities
确定帕金森病和合并症生物标志物的质谱方法的开发和转化
- 批准号:
2907463 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship