CDS&E: D3SC: The Dark Reaction Project: A machine-learning approach to exploring structural diversity in solid state synthesis
CDS
基本信息
- 批准号:1928882
- 负责人:
- 金额:$ 55.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-11-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award receives funds from the Division of Materials Research, the Chemistry Division and the Office of Advanced Cyberinfrastructure. This award supports research and education that uses data-centric methods to enable the prediction of metal oxide compounds with desired properties. Organically-templated metal oxides have a tremendous degree of structural diversity and compositional flexibility. This allows chemists to tune the structures, properties, and symmetries of these compounds to optimize their performance in specific applications that include catalysis, molecular sieving, gas adsorption, and nonlinear optics. However, new compounds are typically created by a trial-and-error procedure, and creating novel compounds with specific structures is a grand challenge in solid state chemistry. This project will develop artificial intelligence techniques for computers called machine learning techniques that can be used to predict the conditions for chemical reactions that will increase structural diversity and lead to specific structural features. This project will also develop machine learning techniques that generate human-readable explanations about the formation mechanism, which will be tested in the laboratory. The primary impact of this project will be to decrease the amount of time and to lower the cost of discovering new materials with specific structural features, which in turn help bring new materials for applications to market more quickly. This project is an example of a collaboration among synthetic chemists, computational chemists, and computer scientists and as a model it may be directly transferred to a wide range of disciplines and avenues of investigation. Undergraduate student research opportunities and curricular developments will be involved throughout the project, thus contributing to the scientific workforce. TECHNICAL SUMMARY This award receives funds from the Division of Materials Research, the Chemistry Division and the Office of Advanced Cyberinfrastructure. This award supports research and education that uses data-centric methods to enable the prediction of metal oxide compounds with desired properties. Hydrothermal synthesis is widely used to create new metal oxide materials with a wide range of functional properties and applications. This project will advance the field by developing software infrastructure for associating the results of X-ray diffraction experiments with individual reactions, extracting structural outcome descriptors from this data, and then determining the extent to which these structural outcomes can be predicted from reaction description data. This will be achieved by developing structural outcome descriptors for geometric properties, non-covalent interaction properties, and electron-density properties, then building machine learning models that correlate these outcomes to reaction conditions, and finally testing the quality of these predictions experimentally. Active learning and auditable and interpretable models will be incorporated into the workflows to help synthetic chemists select better (more insightful/novel) reactions in an interactive fashion.
非技术总结该奖项由材料研究部、化学部和先进网络基础设施办公室提供资金。该奖项支持使用以数据为中心的方法来预测具有所需性质的金属氧化物化合物的研究和教育。有机模板金属氧化物具有极大程度的结构多样性和组成灵活性。这使得化学家可以调整这些化合物的结构、性能和对称性,以优化其在特定应用中的性能,包括催化、分子筛分、气体吸附和非线性光学。然而,新化合物通常是通过试错过程产生的,而创造具有特定结构的新化合物在固态化学中是一个巨大的挑战。该项目将开发用于计算机的人工智能技术,称为机器学习技术,可用于预测化学反应的条件,这将增加结构多样性并导致特定的结构特征。该项目还将开发机器学习技术,生成关于形成机制的人类可读的解释,并将在实验室进行测试。该项目的主要影响将是减少发现具有特定结构特征的新材料的时间和成本,这反过来又有助于将新材料更快地推向市场。这个项目是合成化学家、计算化学家和计算机科学家之间合作的一个例子,作为一个模型,它可以直接转移到广泛的学科和研究途径。整个项目将涉及本科生的研究机会和课程开发,从而为科学工作做出贡献。该奖项由材料研究部、化学部和先进网络基础设施办公室提供资金。该奖项支持使用以数据为中心的方法来预测具有所需性质的金属氧化物化合物的研究和教育。水热合成被广泛应用于合成具有广泛功能性质和应用的新型金属氧化物材料。该项目将通过开发软件基础设施,将X射线衍射实验的结果与个别反应相关联,从这些数据中提取结构结果描述符,然后确定从反应描述数据中可以预测这些结构结果的程度,从而推动该领域的发展。这将通过以下方法实现:开发几何属性、非共价相互作用属性和电子密度属性的结构结果描述符,然后建立将这些结果与反应条件相关联的机器学习模型,最后通过实验测试这些预测的质量。主动学习和可审计和可解释的模型将被纳入工作流程,以帮助合成化学家以交互方式选择更好的(更有洞察力/新奇的)反应。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced Electrocatalytic Oxidation of Small Organic Molecules on Platinum-Gold Nanowires: Influence of the Surface Structure and Pt-Pt/Pt-Au Pair Site Density
- DOI:10.1021/acsami.1c17244
- 发表时间:2021-12-10
- 期刊:
- 影响因子:9.5
- 作者:Smina, Nicole;Rosen, Adam;Koenigsmann, Christopher
- 通讯作者:Koenigsmann, Christopher
Shapley Residuals: Quantifying the limits of the Shapley value for explanations
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Indra Elizabeth Kumar;C. Scheidegger;S. Venkatasubramanian;Sorelle A. Friedler
- 通讯作者:Indra Elizabeth Kumar;C. Scheidegger;S. Venkatasubramanian;Sorelle A. Friedler
Assessing the Local Interpretability of Machine Learning Models.
评估机器学习模型的本地可解释性。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Slack, D.;Friedler, S.A.;Roy, C.D.;Scheidegger, C.
- 通讯作者:Scheidegger, C.
Autonomous experimentation systems for materials development: A community perspective
- DOI:10.1016/j.matt.2021.06.036
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:E. Stach;Brian L. DeCost;A. Kusne;J. Hattrick-Simpers;Keith A. Brown;Kristofer G. Reyes;Joshua Schrier;S. Billinge;T. Buonassisi;Ian T Foster;Carla P. Gomes;J. Gregoire;Apurva Mehta;Joseph H. Montoya;E. Olivetti;Chiwoo Park;E. Rotenberg;S. Saikin;S. Smullin;V. Stanev;B. Maruyama
- 通讯作者:E. Stach;Brian L. DeCost;A. Kusne;J. Hattrick-Simpers;Keith A. Brown;Kristofer G. Reyes;Joshua Schrier;S. Billinge;T. Buonassisi;Ian T Foster;Carla P. Gomes;J. Gregoire;Apurva Mehta;Joseph H. Montoya;E. Olivetti;Chiwoo Park;E. Rotenberg;S. Saikin;S. Smullin;V. Stanev;B. Maruyama
Determining the Activity Series with the Fewest Experiments Using Sorting Algorithms
使用排序算法以最少的实验确定活动系列
- DOI:10.1021/acs.jchemed.1c00043
- 发表时间:2021
- 期刊:
- 影响因子:3
- 作者:Schrier, Joshua;Tynes, Michael F.;Cain, Lillian
- 通讯作者:Cain, Lillian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Schrier其他文献
Probing structural adaptability in templated vanadium selenites
探讨模板化钒亚硒酸盐的结构适应性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Philip Adler;R. J. Xu;Jacob H. Olshansky;Matthew D. Smith;Katherine C. Elbert;Yunwen Yang;G. Ferrence;M. Zeller;Joshua Schrier;A. Norquist - 通讯作者:
A. Norquist
Carbon dioxide separation with a two-dimensional polymer membrane.
- DOI:
10.1021/am300867d - 发表时间:
2012-07 - 期刊:
- 影响因子:9.5
- 作者:
Joshua Schrier - 通讯作者:
Joshua Schrier
Predicting organic thin-film transistor carrier type from single molecule calculations
从单分子计算预测有机薄膜晶体管载流子类型
- DOI:
10.1016/j.comptc.2011.02.015 - 发表时间:
2011 - 期刊:
- 影响因子:2.8
- 作者:
A. Subhas;J. Whealdon;Joshua Schrier - 通讯作者:
Joshua Schrier
Research in Physical Chemistry at Primarily Undergraduate Institutions.
主要在本科院校进行物理化学研究。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.3
- 作者:
Joshua Schrier - 通讯作者:
Joshua Schrier
Review of low-cost self-driving laboratories in chemistry and materials science: the “frugal twin” concept
化学与材料科学低成本自动驾驶实验室综述:“节俭双胞胎”概念
- DOI:
10.1039/d3dd00223c - 发表时间:
2024-05-15 - 期刊:
- 影响因子:5.600
- 作者:
Stanley Lo;Sterling G. Baird;Joshua Schrier;Ben Blaiszik;Nessa Carson;Ian Foster;Andrés Aguilar-Granda;Sergei V. Kalinin;Benji Maruyama;Maria Politi;Helen Tran;Taylor D. Sparks;Alán Aspuru-Guzik - 通讯作者:
Alán Aspuru-Guzik
Joshua Schrier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Schrier', 18)}}的其他基金
MFB: Accelerating the Discovery of Novel Liposome Formations with Origins-of-Life Insights, Laboratory Automation, and Machine Learning
MFB:利用生命起源洞察、实验室自动化和机器学习加速新型脂质体形成的发现
- 批准号:
2226511 - 财政年份:2022
- 资助金额:
$ 55.27万 - 项目类别:
Standard Grant
CDS&E: D3SC: The Dark Reaction Project: A machine-learning approach to exploring structural diversity in solid state synthesis
CDS
- 批准号:
1709351 - 财政年份:2017
- 资助金额:
$ 55.27万 - 项目类别:
Standard Grant
The Dark Reaction Project: A Machine Learning Approach to Materials Discovery
暗反应项目:材料发现的机器学习方法
- 批准号:
1307801 - 财政年份:2013
- 资助金额:
$ 55.27万 - 项目类别:
Standard Grant
相似海外基金
D3SC: CDS&E: Collaborative Research: Machine Learning Modeling for the Reactivity of Organic Contaminants in Engineered and Natural Environments
D3SC:CDS
- 批准号:
2105032 - 财政年份:2021
- 资助金额:
$ 55.27万 - 项目类别:
Standard Grant
Collaborative Research: D3SC: CDS&E: Predictive Discovery of Porphyrin Molecules and their Response Properties using Smart Objects-Enabled Machine Learning
合作研究:D3SC:CDS
- 批准号:
2055668 - 财政年份:2021
- 资助金额:
$ 55.27万 - 项目类别:
Standard Grant
D3SC: CDS&E: Collaborative Research: Machine Learning Modeling for the Reactivity of Organic Contaminants in Engineered and Natural Environments
D3SC:CDS
- 批准号:
2105005 - 财政年份:2021
- 资助金额:
$ 55.27万 - 项目类别:
Standard Grant
D3SC: Dynamic Effects in Ordinary Organic Reactions in Solution
D3SC:溶液中普通有机反应的动态效应
- 批准号:
2102647 - 财政年份:2021
- 资助金额:
$ 55.27万 - 项目类别:
Standard Grant
Collaborative Research: D3SC: CDS&E: Predictive Discovery of Porphyrin Molecules and their Response Properties using Smart Objects-Enabled Machine Learning
合作研究:D3SC:CDS
- 批准号:
2055669 - 财政年份:2021
- 资助金额:
$ 55.27万 - 项目类别:
Standard Grant
D3SC: Developing Data-Driven, Automated Methodology to Understand and Control Light-Driven Catalytic Processes
D3SC:开发数据驱动的自动化方法来理解和控制光驱动的催化过程
- 批准号:
2102460 - 财政年份:2021
- 资助金额:
$ 55.27万 - 项目类别:
Continuing Grant
D3SC: CDS&E: Collaborative Research: Development and application of accurate, transferable and extensible deep neural network potentials for molecules and reactions
D3SC:CDS
- 批准号:
2041108 - 财政年份:2020
- 资助金额:
$ 55.27万 - 项目类别:
Standard Grant
D3SC: Collaborative Research: Overcoming Challenges in Classification Near the Limit of Determination
D3SC:协作研究:克服接近确定极限的分类挑战
- 批准号:
2003867 - 财政年份:2020
- 资助金额:
$ 55.27万 - 项目类别:
Standard Grant
D3SC: Signaling Axes Modulated by Cyclic Dinucleotides
D3SC:环状二核苷酸调节的信号轴
- 批准号:
2004102 - 财政年份:2020
- 资助金额:
$ 55.27万 - 项目类别:
Standard Grant
D3SC: Collaborative Research: Overcoming Challenges in Classification Near the Limit of Determination
D3SC:协作研究:克服接近确定极限的分类挑战
- 批准号:
2003839 - 财政年份:2020
- 资助金额:
$ 55.27万 - 项目类别:
Standard Grant