MFB: Accelerating the Discovery of Novel Liposome Formations with Origins-of-Life Insights, Laboratory Automation, and Machine Learning

MFB:利用生命起源洞察、实验室自动化和机器学习加速新型脂质体形成的发现

基本信息

  • 批准号:
    2226511
  • 负责人:
  • 金额:
    $ 107.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Formulations chemistry is a crucial, but often overlooked area, in fields as diverse as pharmaceuticals, agricultural chemicals, paints and coatings, cosmetics, and household products. Modern designed lipid bilayer structures are complex, multicomponent blends that define the cell. How much can they be simplified and still achieve basic functionality? Understanding how to build lipid structures with specified functionality can advance both fundamental knowledge about origins of life and biotechnology. Machine learning and autonomous research methods developed in this project have direct applications to this problem. Designed lipid bilayer structures with simplified compositions, like liposomes, are important for drug delivery of novel biological pharmaceuticals, mRNA vaccines, and agrochemicals. More speculatively, the ability to create artificial, minimally functional cell-like structures could be combined with existing cell-free biochemistry systems to generate novel synthetic biological systems that combine the engineering advantages of cell-free systems with the ability to self-repair or self-support of cellular systems. Developing artificial protocells with simple components would not only inform our knowledge about how life evolved, but also enable the creation of engineered abiotic biochemical systems. To do this we must overcome the anthropogenic bias and combinatorial explosion with laboratory automation and machine-learning methods. Traditional approaches to chemical evolution have been biased by considering a “best guess” for starting conditions and reactants based on extant organisms and considered only a relatively limited numbers of chemical inputs ( 10 reactants) to tame combinatorial complexity. In this project the investigators will use a combination of laboratory automation and machine-learning-guided experimentation to obtain datasets and statistical baselines, needed to test algorithms for exploring and optimizing these complex, non-ideal mixtures. The investigators will develop algorithms for autonomous formulations chemistry. Experimental chemistry data is noisy, biased, and small compared to most machine learning datasets, and so it is necessary to both make use of existing data while also exploring new chemical systems. The investigators will develop active and meta- learning machine learning approaches to learn from existing experimental data when approaching new optimization problems, utilizing contrastive meta model changes to infer relevant variables. They will also explore graph regularized matrix factorization methods to learn low-dimensional representations directly from experimental observations. Finally, they will continue the development of open-source experimental data management software to facilitate data reuse and sharing. In this project the PIs will engage the broader machine-learning community by running open challenge competitions, using platforms like Kaggle, and disseminating open datasets, with the aim to bring new technical insights into origins-of-life and biophysics research, by drawing upon a pool of citizen scientists. This research will be conducted at two undergraduate-only chemistry departments at Central Connecticut University and Fordham University. This award will support summer and academic year research positions for undergraduate students at the two universities, as well as research of two postdoctoral researchers. Bringing postdoctoral researchers into undergraduate-focused departments exposes undergraduates to another phase of the “life of the scientist”, particularly in the form of a “near peer” who may be more relatable than a professor. It also exposes postdoctoral researchers to the possibility of active research careers at non-R1 universities. The PIs will continue the development of low-cost, open-source robotic hardware and pedagogical material that brings origins of life and laboratory automation into teaching labs, to help train the next generation of chemists to incorporate automation into their experimental process. This project is jointly supported by the Division of Chemistry (CHE), the Division of Information and Intelligent Systems (IIS), the Division of Molecular and Cellular Biosciences (MCB), and the Division of Physics (PHY) Physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
配方化学是一个至关重要但经常被忽视的领域,在制药,农业化学品,油漆和涂料,化妆品和家用产品等领域。现代设计的脂质双层结构是定义细胞的复杂的多组分共混物。它们能被简化到什么程度并仍然实现基本功能? 了解如何构建具有特定功能的脂质结构可以推进关于生命起源和生物技术的基础知识。该项目中开发的机器学习和自主研究方法直接应用于这个问题。具有简化组成的脂质双层结构,如脂质体,对于新型生物药物、mRNA疫苗和农用化学品的药物递送是重要的。更推测地,产生人工的、功能最小的细胞样结构的能力可以与现有的无细胞生物化学系统相结合,以产生新的合成生物系统,该系统将无细胞系统的工程优点与细胞系统的自我修复或自我支持的能力联合收割机相结合。开发具有简单成分的人工原始细胞不仅可以为我们提供关于生命如何进化的知识,而且还可以创造工程化的非生物生化系统。要做到这一点,我们必须克服人为偏见和实验室自动化和机器学习方法的组合爆炸。传统的化学进化方法是有偏见的,考虑了一个“最佳猜测”的起始条件和反应物的基础上现存的生物体,并认为只有相对有限数量的化学输入(10个反应物)驯服组合的复杂性。 在这个项目中,研究人员将使用实验室自动化和机器学习引导的实验相结合来获得数据集和统计基线,这些数据集和统计基线是测试探索和优化这些复杂的非理想混合物的算法所需的。研究人员将开发自主配方化学的算法。与大多数机器学习数据集相比,实验化学数据是嘈杂的,有偏见的,而且很小,因此有必要利用现有数据,同时探索新的化学系统。研究人员将开发主动和Meta学习机器学习方法,在处理新的优化问题时从现有的实验数据中学习,利用对比Meta模型变化来推断相关变量。他们还将探索图正则化矩阵分解方法,以直接从实验观察中学习低维表示。最后,他们将继续开发开放源码实验数据管理软件,以促进数据的再利用和共享。在这个项目中,PI将通过运行开放挑战赛,使用Kaggle等平台和传播开放数据集来吸引更广泛的机器学习社区,目的是通过利用公民科学家来为生命起源和生物物理学研究带来新的技术见解。 这项研究将在康涅狄格州中部大学和福德姆大学的两个本科生化学系进行。该奖项将支持两所大学本科生的夏季和学年研究职位,以及两名博士后研究人员的研究。将博士后研究人员引入以本科生为中心的部门,使本科生接触到“科学家生活”的另一个阶段,特别是以“近同行”的形式,他们可能比教授更容易相处。它还使博士后研究人员有可能在非R1大学从事积极的研究工作。PI将继续开发低成本,开源的机器人硬件和教学材料,将生命的起源和实验室自动化引入教学实验室,以帮助培训下一代化学家将自动化纳入他们的实验过程。该项目由化学部(CHE)、信息和智能系统部(IIS)、分子和细胞生物科学部(MCB)以及物理部(PHY)物理共同支持。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Modern Twist on an Old Measurement: Using Laboratory Automation and Data Science to Determine the Solubility Product of Lead Iodide
旧测量的现代转变:利用实验室自动化和数据科学来确定碘化铅的溶解度乘积
  • DOI:
    10.1021/acs.jchemed.3c00445
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Norquist, Alexander J.;Jones-Thomson, Gabriel;He, Keqing;Egg, Thomas;Schrier, Joshua
  • 通讯作者:
    Schrier, Joshua
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Schrier其他文献

Probing structural adaptability in templated vanadium selenites
探讨模板化钒亚硒酸盐的结构适应性
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Philip Adler;R. J. Xu;Jacob H. Olshansky;Matthew D. Smith;Katherine C. Elbert;Yunwen Yang;G. Ferrence;M. Zeller;Joshua Schrier;A. Norquist
  • 通讯作者:
    A. Norquist
Carbon dioxide separation with a two-dimensional polymer membrane.
Predicting organic thin-film transistor carrier type from single molecule calculations
从单分子计算预测有机薄膜晶体管载流子类型
Research in Physical Chemistry at Primarily Undergraduate Institutions.
主要在本科院校进行物理化学研究。
Review of low-cost self-driving laboratories in chemistry and materials science: the “frugal twin” concept
化学与材料科学低成本自动驾驶实验室综述:“节俭双胞胎”概念
  • DOI:
    10.1039/d3dd00223c
  • 发表时间:
    2024-05-15
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Stanley Lo;Sterling G. Baird;Joshua Schrier;Ben Blaiszik;Nessa Carson;Ian Foster;Andrés Aguilar-Granda;Sergei V. Kalinin;Benji Maruyama;Maria Politi;Helen Tran;Taylor D. Sparks;Alán Aspuru-Guzik
  • 通讯作者:
    Alán Aspuru-Guzik

Joshua Schrier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua Schrier', 18)}}的其他基金

CDS&E: D3SC: The Dark Reaction Project: A machine-learning approach to exploring structural diversity in solid state synthesis
CDS
  • 批准号:
    1928882
  • 财政年份:
    2018
  • 资助金额:
    $ 107.42万
  • 项目类别:
    Standard Grant
CDS&E: D3SC: The Dark Reaction Project: A machine-learning approach to exploring structural diversity in solid state synthesis
CDS
  • 批准号:
    1709351
  • 财政年份:
    2017
  • 资助金额:
    $ 107.42万
  • 项目类别:
    Standard Grant
The Dark Reaction Project: A Machine Learning Approach to Materials Discovery
暗反应项目:材料发现的机器学习方法
  • 批准号:
    1307801
  • 财政年份:
    2013
  • 资助金额:
    $ 107.42万
  • 项目类别:
    Standard Grant

相似海外基金

FMO/ML-Guided Drug Design: Accelerating Novel Inhibitor Development and Drug Discovery
FMO/ML 引导的药物设计:加速新型抑制剂的开发和药物发现
  • 批准号:
    24K20888
  • 财政年份:
    2024
  • 资助金额:
    $ 107.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: HayaRupu: Accelerating Natural Hazard Engineering with AI-Driven Discovery Loops
职业:HayaRupu:利用人工智能驱动的发现循环加速自然灾害工程
  • 批准号:
    2339678
  • 财政年份:
    2024
  • 资助金额:
    $ 107.42万
  • 项目类别:
    Continuing Grant
CAREER: Accelerating Scientific Discovery via Deep Learning with Strong Physics Inductive Biases
职业:通过具有强物理归纳偏差的深度学习加速科学发现
  • 批准号:
    2338909
  • 财政年份:
    2024
  • 资助金额:
    $ 107.42万
  • 项目类别:
    Continuing Grant
Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
  • 批准号:
    10552325
  • 财政年份:
    2023
  • 资助金额:
    $ 107.42万
  • 项目类别:
CAREER: Combining Machine Learning and Physics-based Modeling Approaches for Accelerating Scientific Discovery
职业:结合机器学习和基于物理的建模方法来加速科学发现
  • 批准号:
    2239175
  • 财政年份:
    2023
  • 资助金额:
    $ 107.42万
  • 项目类别:
    Continuing Grant
New Technologies for Accelerating the Discovery and Characterization of Neuroactives that Address Substance Use Disorders
加速发现和表征解决药物使用障碍的神经活性物质的新技术
  • 批准号:
    10680754
  • 财政年份:
    2023
  • 资助金额:
    $ 107.42万
  • 项目类别:
Engineering Immuno-Glial-Neurovascular 3D-Brain-Chips with a Perfusable BBB for Accelerating Alzheimer’s Disease Drug Discovery and Translation
工程免疫胶质神经血管 3D 脑芯片与可灌注 BBB 加速阿尔茨海默病药物发现和转化
  • 批准号:
    10741377
  • 财政年份:
    2023
  • 资助金额:
    $ 107.42万
  • 项目类别:
Empowering gene discovery and accelerating clinical translation for diverse admixed populations
促进基因发现并加速不同混合人群的临床转化
  • 批准号:
    10584936
  • 财政年份:
    2023
  • 资助金额:
    $ 107.42万
  • 项目类别:
New Advances in Multisegment Injection-Capillary Electrophoresis-Mass Spectrometry for Accelerating Biomarker Discovery in Metabolomics
多段注射-毛细管电泳-质谱法加速代谢组学生物标志物发现的新进展
  • 批准号:
    RGPIN-2020-06630
  • 财政年份:
    2022
  • 资助金额:
    $ 107.42万
  • 项目类别:
    Discovery Grants Program - Individual
Accelerating the discovery and development of neurotracers via high-throughput radiochemistry
通过高通量放射化学加速神经示踪剂的发现和开发
  • 批准号:
    10446149
  • 财政年份:
    2022
  • 资助金额:
    $ 107.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了