RII Track-4: Robust Matrix Completion State Estimation in Low-Observability Distribution Systems under False Data Injection Attacks

RII Track-4:虚假数据注入攻击下低可观测性分布系统中的鲁棒矩阵完成状态估计

基本信息

  • 批准号:
    1929147
  • 负责人:
  • 金额:
    $ 19.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-12-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

The operational landscape at electric distribution grids is undergoing a radical transformation. Notably, the impact of distributed renewable energy sources and the impetus to improve cybersecurity are challenging the status quo and calling for innovative techniques to enhance situational awareness in the distribution grid. With the support of an EPSCoR Research Fellowship, the PI and a Ph.D. student will receive training on new techniques, including a novel state estimation approach and a next-generation cyber-physical system simulation platform, at the National Renewable Energy Laboratory (NREL). The PI and the student will closely collaborate with NREL researchers by focusing on how to acquire better state estimation in low-observability distribution grids under cyber data attacks. This fellowship will provide an excellent opportunity for a Ph.D. student and an underrepresented undergraduate to gain valuable experience and develop new skillsets. The PI will bring the new techniques back to the home institution, i.e., Kansas State University (KSU), and introduce them to other investigators in related fields. This fellowship will foster a strong partnership between KSU and NREL, and help the state of Kansas better meet its renewable energy goals.Legacy distribution systems traditionally have very low observability due to a limited amount of sensors. Obtaining required situational awareness is currently not feasible due to the immense scale of the network and limited availability of measurements. While the use of information from advanced metering infrastructure and phasor measurement units can improve the observability of distribution systems, another growing concern with the use of information is its susceptibility to cyber data attacks. The overarching goal of this fellowship is to support the PI?s training and collaborative research at the National Renewable Energy Laboratory (NREL). The training and research will focus on the development and validation of a novel state estimation approach in the low-observability distribution system under cyber data attacks. Specific training and research objectives include: i) developing a bad data detection approach based on matrix completion state estimation; ii) designing a fully distributed solution for scalability; iii) modeling false data injection attacks in distribution networks; iv) receiving training on Hierarchical Engine for Large-scale Infrastructure Co-Simulation (HELICS) platform; and v) performing proof-of-concept validation. This project will expand the PI?s research capacity and transform his career path towards a promising direction in enhancing cybersecurity of the power grid. This project will result in novel tools that can be used by system operators to enhance the situational awareness of distribution systems. The research outcome of this project will be integrated into the PI's courses to aid the retention of current STEM students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
配电网的运营格局正在发生根本性的转变。值得注意的是,分布式可再生能源的影响和改善网络安全的动力正在挑战现状,并呼吁采用创新技术来增强配电网的态势感知能力。在EPSCoR研究奖学金的支持下,PI和博士学生将在国家可再生能源实验室(NREL)接受新技术培训,包括新的状态估计方法和下一代网络物理系统仿真平台。PI和学生将与NREL研究人员密切合作,专注于如何在网络数据攻击下在低可观测性配电网中获得更好的状态估计。这个奖学金将提供一个很好的机会,博士。学生和代表性不足的本科生获得宝贵的经验和发展新的技能。主要研究者将把新技术带回本国机构,即,堪萨斯州立大学(KSU),并将他们介绍给相关领域的其他研究人员。该奖学金将促进KSU和NREL之间的强有力的合作伙伴关系,并帮助堪萨斯州更好地实现其可再生能源目标。传统的配电系统由于传感器数量有限,可观测性非常低。由于网络规模巨大,测量数据有限,目前无法获得所需的态势感知。虽然使用来自先进计量基础设施和相量测量单元的信息可以提高配电系统的可观测性,但使用信息的另一个日益关注的问题是其对网络数据攻击的敏感性。这个奖学金的首要目标是支持PI?在国家可再生能源实验室(NREL)的培训和合作研究。培训和研究的重点是在网络数据攻击下的低可观测性配电系统中开发和验证一种新的状态估计方法。具体的培训和研究目标包括:i)开发一种基于矩阵完备状态估计的不良数据检测方法; ii)设计一种完全分布式的可扩展性解决方案; iii)对配电网络中的虚假数据注入攻击进行建模; iv)接受大规模基础设施协同仿真分层引擎(HELICS)平台的培训;以及v)执行概念验证。这个项目将扩大PI?的研究能力,并将他的职业道路转向加强电网网络安全的有前途的方向。该项目将产生新的工具,可用于系统运营商,以提高配电系统的态势感知。该项目的研究成果将被整合到PI的课程中,以帮助现有STEM学生的保留。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal D-FACTS Placement in Moving Target Defense Against False Data Injection Attacks
  • DOI:
    10.1109/tsg.2020.2977207
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    9.6
  • 作者:
    Bo Liu;Hongyu Wu
  • 通讯作者:
    Bo Liu;Hongyu Wu
Net Load Redistribution Attacks on Nodal Voltage Magnitude Estimation in AC Distribution Networks
A Fast Penalty-Based Gauss-Seidel Method for Stochastic Unit Commitment With Uncertain Load and Wind Generation
Matrix-Completion-Based False Data Injection Attacks Against Machine Learning Detectors
  • DOI:
    10.1109/tsg.2023.3308339
  • 发表时间:
    2024-03
  • 期刊:
  • 影响因子:
    9.6
  • 作者:
    Bo Liu;Hongyu Wu;Qihui Yang;Hang Zhang;Yajing Liu;Y. Zhang
  • 通讯作者:
    Bo Liu;Hongyu Wu;Qihui Yang;Hang Zhang;Yajing Liu;Y. Zhang
Systematic planning of moving target defence for maximising detection effectiveness against false data injection attacks in smart grid
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hongyu Wu其他文献

The role of radical prostatectomy in patients with pretreatment prostate-specific antigen ⩾40 ng/mL☆
根治性前列腺切除术对治疗前前列腺特异性抗原≤40 ng/mL≤的患者的作用
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. P. Vanasupa;E. Paquette;Hongyu Wu;Leon L Sun;David G. McLeod;David G. Mcleod;J. Moul;J. Moul
  • 通讯作者:
    J. Moul
Interactive Color Theme Editing System for Interior Design
室内设计交互式色彩主题编辑系统
  • DOI:
    10.1088/1742-6596/1627/1/012019
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hai Yan;Bin Yang;Xueming Li;Hongyu Wu;Qiang Fu
  • 通讯作者:
    Qiang Fu
Integrative analysis of health restoration in urban blue-green spaces: A multiscale approach to community park
城市蓝绿空间健康恢复的综合分析:社区公园的多尺度方法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Jiangjun Wan;Hongyu Wu;Rebecca Collins;Kuntao Deng;Wei Zhu;Hai Xiao;Xiaohong Tang;Congshan Tian;Chengyan Zhang;Lingqing Zhang
  • 通讯作者:
    Lingqing Zhang
Stochastic optimal scheduling of residential appliances with renewable energy sources
可再生能源家用电器的随机优化调度
A Comparison of Animated and Adult Video Modelling in Teaching Social-Communication Skills to 3-Year-Olds with Autism Spectrum Disorders
动画和成人视频建模在向患有自闭症谱系障碍的 3 岁儿童教授社交沟通技能方面的比较

Hongyu Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hongyu Wu', 18)}}的其他基金

Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
  • 批准号:
    2229344
  • 财政年份:
    2023
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Standard Grant
CAREER: Towards attack-resilient cyber-physical smart grids: moving target defense for data integrity attack detection, identification and mitigation
职业:迈向抗攻击的网络物理智能电网:用于数据完整性攻击检测、识别和缓解的移动目标防御
  • 批准号:
    2146156
  • 财政年份:
    2022
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Continuing Grant

相似海外基金

NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Exploring van der Waals Superconducting Josephson Junctions for Robust Qubits
RII Track-4:NSF:探索稳健量子位的范德华超导约瑟夫森结
  • 批准号:
    2327410
  • 财政年份:
    2024
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Designing Safe and Robust Human-machine Interactions with Fuzzy Mental Models
合作研究:FMitF:第一轨:利用模糊心理模型设计安全、鲁棒的人机交互
  • 批准号:
    2319318
  • 财政年份:
    2023
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Standard Grant
SCC-IRG Track 1: Socially-integrated robust communication and information-resource sharing technologies for post-disaster community self-reliance
SCC-IRG 第 1 轨道:社会整合的稳健通信和信息资源共享技术,促进灾后社区自力更生
  • 批准号:
    2311405
  • 财政年份:
    2023
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Designing Safe and Robust Human-machine Interactions with Fuzzy Mental Models
合作研究:FMitF:第一轨:利用模糊心理模型设计安全、鲁棒的人机交互
  • 批准号:
    2319317
  • 财政年份:
    2023
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Standard Grant
RII Track-4 NSF: Robust, Predictive, and Learning Guidance Algorithms for On-Orbit Servicing and Assembly Using Multiple Space Systems
RII Track-4 NSF:使用多个空间系统进行在轨维修和组装的稳健、预测和学习制导算法
  • 批准号:
    2229756
  • 财政年份:
    2023
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 1: Energy Efficient Quantum Control of Robust Spin Ensemble Qubits (EQ2)
ExpandQISE:轨道 1:鲁棒自旋系综量子位的节能量子控制 (EQ2)
  • 批准号:
    2231356
  • 财政年份:
    2022
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Standard Grant
FMitF: Track I: Robust Enforcement of Customizable Resource Constraints in Heterogeneous Embedded Systems
FMITF:第一轨:异构嵌入式系统中可定制资源约束的稳健执行
  • 批准号:
    2124010
  • 财政年份:
    2021
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Standard Grant
RII Track-1: Data Analytics that are Robust and Trusted (DART): From Smart Curation to Socially Aware Decision Making
RII Track-1:稳健且值得信赖的数据分析 (DART):从智能管理到社会意识决策
  • 批准号:
    1946391
  • 财政年份:
    2020
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Cooperative Agreement
NNA Track 1: Collaborative Research: ARC-NAV: Arctic Robust Communities-Navigating Adaptation to Variability
NNA 轨道 1:合作研究:ARC-NAV:北极稳健社区 - 导航适应变化
  • 批准号:
    1928126
  • 财政年份:
    2019
  • 资助金额:
    $ 19.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了