CAREER: Towards attack-resilient cyber-physical smart grids: moving target defense for data integrity attack detection, identification and mitigation
职业:迈向抗攻击的网络物理智能电网:用于数据完整性攻击检测、识别和缓解的移动目标防御
基本信息
- 批准号:2146156
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF CAREER project aims to provide a theoretical foundation and design guiding principles that will unlock the full potential of moving target defense (MTD) approaches and significantly enhance the resiliency of cyber-physical power grids under cyber data attacks. The project will transform existing bulk transmission system operations that rely on limited cyber-layer security mechanisms to proactive defense-in-depth approaches in both the cyber and physical layers using widely-deployed smart devices. The intellectual merits of the project include developing novel optimization, graph theory, low-rank matrix theory, and machine learning-based methods for optimal planning and operation of moving target defense devices, rapid detection, accurate identification, and robust mitigation of cyber data integrity attacks. The broader impacts of the project include promoting public awareness and understanding of smart grid cybersecurity, contributing to power engineering education, and preparing a diverse learning community, including middle and high school students, with requisite knowledge and skillsets to tackle future power grid security challenges. The successful completion of this project will provide power system operators with new tools to enhance situational awareness and better defend the power grid against cyber data attacks.MTD is an emerging concept originally introduced for computer and communication networks. Existing MTD approaches are limited to the cyber layer of a cyber-physical system. However, if field devices or internal communication networks are physically compromised, adverse consequences are trigged within the physical layer. Therefore, the cyber-layer MTD alone is inadequate for securing real-world power grids with significant attack surfaces. The goal of this CAREER project is to develop and validate physical-layer MTD approaches to detect, identify, and mitigate data integrity attacks by strong adversaries with state-of-the-art machine learning capabilities. The proposed MTD approaches feature three major technical innovations: 1) A minimum spanning tree-enabled planning scheme that maximizes MTD detection effectiveness while considering system economic and reliability metrics; 2) A novel alternating current optimal power flow operational framework, constrained by scalable voltage stability approaches, to ensure the MTD hiddenness and detection performance; and 3) A low-rank matrix decomposition method assisted by MTD approaches that radically improves the attack identification speed and measurement recovery accuracy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF CAREER项目旨在提供理论基础和设计指导原则,以释放移动目标防御(MTD)方法的全部潜力,并显着增强网络物理电网在网络数据攻击下的弹性。该项目将利用广泛部署的智能设备,将现有依赖有限网络层安全机制的批量传输系统操作转变为网络层和物理层的主动纵深防御方法。该项目的智力优势包括开发新的优化、图论、低秩矩阵理论和基于机器学习的方法,用于移动目标防御设备的优化规划和操作,快速检测、准确识别和强大的网络数据完整性攻击缓解。该项目的更广泛影响包括提高公众对智能电网网络安全的认识和理解,为电力工程教育做出贡献,并为包括中学生和高中生在内的多元化学习社区做好准备,使其具备应对未来电网安全挑战所需的知识和技能。该项目的成功完成将为电力系统运营商提供新的工具,以增强态势感知能力,更好地保护电网免受网络数据攻击。MTD是一个新兴的概念,最初是为计算机和通信网络引入的。现有的MTD方法仅限于网络物理系统的网络层。但是,如果现场设备或内部通信网络受到物理破坏,则会在物理层内触发不良后果。因此,仅网络层MTD不足以保护具有重大攻击面的现实世界电网。CAREER项目的目标是开发和验证物理层MTD方法,以检测、识别和减轻具有最先进机器学习能力的强大对手的数据完整性攻击。提出的MTD方法具有三个主要的技术创新:1)最小生成树支持的规划方案,在考虑系统经济和可靠性指标的同时最大限度地提高MTD检测效率;2)在可扩展电压稳定方法的约束下,提出了一种新的交流最优潮流运行框架,以保证MTD的隐蔽性和检测性能;3)基于MTD方法的低秩矩阵分解方法,从根本上提高了攻击识别速度和测量恢复精度。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-driven FDI Attacks: A Stealthy Approach to Subvert SVM Detectors in Power System
数据驱动的 FDI 攻击:颠覆电力系统中 SVM 检测器的隐秘方法
- DOI:10.1109/kpec58008.2023.10215462
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Liu, Bo;Wu, Hongyu;Yang, Qihui;Liu, Xuebo;Liu, Yajing
- 通讯作者:Liu, Yajing
Matrix-Completion-Based False Data Injection Attacks Against Machine Learning Detectors
- DOI:10.1109/tsg.2023.3308339
- 发表时间:2024-03
- 期刊:
- 影响因子:9.6
- 作者:Bo Liu;Hongyu Wu;Qihui Yang;Hang Zhang;Yajing Liu;Y. Zhang
- 通讯作者:Bo Liu;Hongyu Wu;Qihui Yang;Hang Zhang;Yajing Liu;Y. Zhang
Load Margin Constrained Moving Target Defense against False Data Injection Attacks
负载裕度约束移动目标防御虚假数据注入攻击
- DOI:10.1109/greentech52845.2022.9772024
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhang, Hang;Fulk, Noah;Liu, Bo;Edmonds, Lawryn;Liu, Xuebo;Wu, Hongyu
- 通讯作者:Wu, Hongyu
Voltage Stability Constrained Moving Target Defense Against Net Load Redistribution Attacks
- DOI:10.1109/tsg.2022.3170839
- 发表时间:2022-09
- 期刊:
- 影响因子:9.6
- 作者:Hang Zhang;Bo Liu;Xuebo Liu;A. Pahwa;Hongyu Wu
- 通讯作者:Hang Zhang;Bo Liu;Xuebo Liu;A. Pahwa;Hongyu Wu
Random-Enabled Hidden Moving Target Defense against False Data Injection Alert Attackers
- DOI:10.3390/pr11020348
- 发表时间:2023-01
- 期刊:
- 影响因子:3.5
- 作者:Bo Liu;Hongyu Wu;Qihui Yang;Hang Zhang
- 通讯作者:Bo Liu;Hongyu Wu;Qihui Yang;Hang Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongyu Wu其他文献
Prediction of treatment response to intravenous glucocorticoid in patients with thyroid-associated ophthalmopathy using T2 mapping and T2 IDEAL
使用 T2 映射和 T2 IDEAL 预测甲状腺相关眼病患者对静脉注射糖皮质激素的治疗反应
- DOI:
10.1016/j.ejrad.2021.109839 - 发表时间:
2021 - 期刊:
- 影响因子:3.3
- 作者:
Linhan Zhai;Ban Luo;Hongyu Wu;Qiuxia Wang;Gang Yuan;Ping Liu;Yanqiang Ma;Yali Zhao;Jing Zhang - 通讯作者:
Jing Zhang
Introduction to Department of Defense Center for Prostate Disease Research Multicenter National Prostate Cancer Database, and analysis of changes in the PSA-era
国防部前列腺疾病研究中心多中心国家前列腺癌数据库介绍及PSA时代变化分析
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Leon L Sun;Kevin J Gancarczyk;E. Paquette;D. Mcleod;C. Kane;L. Kusuda;R. Lance;Judy Herring;J. Foley;D. Baldwin;J. Bishoff;D. Soderdahl;Hongyu Wu;Linda L. Xu;J. Moul - 通讯作者:
J. Moul
Interactive Color Theme Editing System for Interior Design
室内设计交互式色彩主题编辑系统
- DOI:
10.1088/1742-6596/1627/1/012019 - 发表时间:
2020-08 - 期刊:
- 影响因子:0
- 作者:
Hai Yan;Bin Yang;Xueming Li;Hongyu Wu;Qiang Fu - 通讯作者:
Qiang Fu
Stochastic optimal scheduling of residential appliances with renewable energy sources
可再生能源家用电器的随机优化调度
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Hongyu Wu;A. Pratt;S. Chakraborty - 通讯作者:
S. Chakraborty
Integrative analysis of health restoration in urban blue-green spaces: A multiscale approach to community park
城市蓝绿空间健康恢复的综合分析:社区公园的多尺度方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:11.1
- 作者:
Jiangjun Wan;Hongyu Wu;Rebecca Collins;Kuntao Deng;Wei Zhu;Hai Xiao;Xiaohong Tang;Congshan Tian;Chengyan Zhang;Lingqing Zhang - 通讯作者:
Lingqing Zhang
Hongyu Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongyu Wu', 18)}}的其他基金
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229344 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RII Track-4: Robust Matrix Completion State Estimation in Low-Observability Distribution Systems under False Data Injection Attacks
RII Track-4:虚假数据注入攻击下低可观测性分布系统中的鲁棒矩阵完成状态估计
- 批准号:
1929147 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
CRII: SaTC: Towards Data-effective and Cost-efficient Security Attack Detections
CRII:SaTC:迈向数据有效且经济高效的安全攻击检测
- 批准号:
2245968 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Towards Attack-Resilient Vision-Guided Unmanned Aerial Vehicles: An Observability Analysis Approach
合作研究:迈向抗攻击视觉引导无人机:一种可观测性分析方法
- 批准号:
2137764 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Towards Attack-Resilient Vision-Guided Unmanned Aerial Vehicles: An Observability Analysis Approach
合作研究:迈向抗攻击视觉引导无人机:一种可观测性分析方法
- 批准号:
2137753 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Towards fault tolerance and attack resiliency in cyber-physical energy systems through learning from data streams under harsh learning conditions
通过在恶劣的学习条件下从数据流中学习,实现网络物理能源系统的容错和攻击弹性
- 批准号:
RGPIN-2021-02968 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Towards fault tolerance and attack resiliency in cyber-physical energy systems through learning from data streams under harsh learning conditions
通过在恶劣的学习条件下从数据流中学习,实现网络物理能源系统的容错和攻击弹性
- 批准号:
DGECR-2021-00284 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Launch Supplement
Towards fault tolerance and attack resiliency in cyber-physical energy systems through learning from data streams under harsh learning conditions
通过在恶劣的学习条件下从数据流中学习,实现网络物理能源系统的容错和攻击弹性
- 批准号:
RGPIN-2021-02968 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
EAGER: Towards Adversarial Attack Resistant Machine Learning Systems
EAGER:迈向抗对抗性攻击的机器学习系统
- 批准号:
1953166 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: TAURUS: Towards a Unified Robust and Secure Data Driven Approach for Attack Detection in Smart Living
协作研究:SaTC:核心:小型:TAURUS:迈向智能生活中攻击检测的统一稳健且安全的数据驱动方法
- 批准号:
2030611 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: TAURUS: Towards a Unified Robust and Secure Data Driven Approach for Attack Detection in Smart Living
协作研究:SaTC:核心:小型:TAURUS:迈向智能生活中攻击检测的统一稳健且安全的数据驱动方法
- 批准号:
2030624 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER: Collaborative: Towards Understanding the Attack Vector of Privacy Technologies
EAGER:协作:了解隐私技术的攻击向量
- 批准号:
1809000 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant