RII Track-4: Deciphering the Role of Polarization on Ion Transport in Ionic Liquid Batteries

RII Track-4:解读极化对离子液体电池中离子传输的作用

基本信息

  • 批准号:
    1929163
  • 负责人:
  • 金额:
    $ 27.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Safe and reliable operation of Li-ion batteries depends critically on the type of electrolytes used. Ionic liquids, novel solvents composed entirely of ions much like common salt but existing as liquids at the temperatures of battery operation, present exciting opportunities as electrolytes due to low volatility and nonflammability. Potentially a million ionic liquids and roughly a billion ionic liquid-ionic liquid mixtures can be designed providing a materials platform for developing next generation of Li-ion batteries. Despite these significant advantages, the progress in ionic liquid-based Li-ion batteries has been limited due to slow Li-ion transport, which increases the time for charging. The objective of the current project is, therefore, to understand ionic liquid-Li interactions to enable the design of novel ionic liquids for fast Li-ion transport. By partnering with researchers from the Pacific Northwest National Laboratory (PNNL), the PI will develop the capability to study ionic liquid-Li interactions using state-of-the-art modeling techniques and DOE's Leadership Computing Facilities. The expertise developed will be shared with undergraduate and graduate students at Oklahoma State University and researchers in the jurisdiction. It is expected that the collaboration resulting from this fellowship will foster engagement of researchers at OSU with those at PNNL and lead to development of new ideas accelerating discoveries in multiple science and engineering disciplines.Li-ion batteries present a promising technological solution for sustainable transportation. One of the major components of Li-ion batteries is the electrolyte through which an efficient transport of Li ions is critical for reliable operation. Room temperature ionic liquids easily fulfill the required electrolyte properties such as electrochemical stability, nonvolatility, nonflammability, and high conductivity over a wide range of temperatures. Despite significant advantages, application of ionic liquids as electrolytes is hampered because the high viscosity of many ionic liquids hinders transport of Li ions causing slow charging and discharging times. Mixing two ionic liquids offers a simple yet powerful strategy to overcome this challenge. However, currently there is a lack of fundamental understanding regarding which ionic liquid combinations are likely to yield promising electrolytes. Further, accurate modeling of such mixtures necessitates capturing the composition-dependent changes in electronic distributions around ions, highlighting the need for polarization. First principles molecular dynamics (FPMD) based on density functional theory approach naturally incorporates this crucial aspect in modeling ionic liquids. The PI will develop this capability in his research group by partnering with researchers from the Pacific Northwest National Laboratory. FPMD simulations will be performed on DOE's Leadership Computing Facilities for ionic liquid mixtures, Li+-ionic liquid mixtures, ionic liquids at electrode interfaces and in the presence of electric field. The newly developed expertise will be shared with researchers at the host institution increasing its research capacity. The proposed fellowship will lead to the training of a graduate student and integration of FPMD simulations in the PI's 'Molecular Modeling and Simulation' course.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
锂离子电池的安全可靠运行关键取决于所使用的电解质类型。离子液体,完全由离子组成的新型溶剂,非常像普通盐,但在电池工作温度下以液体形式存在,由于低挥发性和不可燃性,作为电解质提供了令人兴奋的机会。可以设计潜在的一百万种离子液体和大约十亿种离子液体-离子液体混合物,为开发下一代锂离子电池提供材料平台。尽管有这些显著的优点,但由于锂离子传输缓慢,这增加了充电时间,因此基于离子液体的锂离子电池的进展受到限制。因此,本项目的目标是了解离子液体-Li相互作用,以设计用于快速Li离子传输的新型离子液体。通过与太平洋西北国家实验室(PNNL)的研究人员合作,PI将开发使用最先进的建模技术和DOE的领导力计算设施研究离子液体-Li相互作用的能力。开发的专业知识将与俄克拉荷马州州立大学的本科生和研究生以及管辖区的研究人员分享。预计该奖学金产生的合作将促进俄勒冈州立大学研究人员与PNNL研究人员的合作,并导致新想法的发展,加速多个科学和工程学科的发现。锂离子电池为可持续交通提供了一个有前途的技术解决方案。锂离子电池的主要组成部分之一是电解质,锂离子的有效传输对于可靠运行至关重要。室温离子液体很容易满足所需的电解质性质,如电化学稳定性,非挥发性,不燃性,以及在宽温度范围内的高电导率。尽管具有显著的优点,但离子液体作为电解质的应用受到阻碍,因为许多离子液体的高粘度阻碍Li离子的传输,导致充电和放电时间缓慢。混合两种离子液体提供了一种简单而强大的策略来克服这一挑战。然而,目前缺乏关于哪种离子液体组合可能产生有前途的电解质的基本理解。此外,这种混合物的精确建模需要捕获离子周围电子分布的组成依赖性变化,突出了极化的需要。基于密度泛函理论方法的第一性原理分子动力学(FPMD)在模拟离子液体时自然地结合了这一关键方面。PI将通过与太平洋西北国家实验室的研究人员合作,在他的研究小组中开发这种能力。FPMD模拟将在DOE的Leadership Computing Facilities上进行,用于离子液体混合物,Li+-离子液体混合物,电极界面处的离子液体以及电场的存在。新开发的专门知识将与东道机构的研究人员分享,以提高其研究能力。 拟议的奖学金将导致研究生的培训和FPMD模拟在PI的“分子建模和模拟”课程的整合。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jindal Shah其他文献

Jindal Shah的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jindal Shah', 18)}}的其他基金

Collaborative Research: CyberTraining: Implementation: Medium: Establishing Sustainable Ecosystem for Computational Molecular Science Training and Education
合作研究:网络培训:实施:中:建立计算分子科学培训和教育的可持续生态系统
  • 批准号:
    2118180
  • 财政年份:
    2021
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
CAREER: Computation-Enabled Rational Design of Cytochrome P450 for Ionic Liquid Biodegradation
职业:用于离子液体生物降解的细胞色素 P450 的计算合理设计
  • 批准号:
    1845143
  • 财政年份:
    2019
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
Generating Nonnative Structures in Binary Ionic Liquid Mixtures for Tunable Phase Equilibria Properties
在二元离子液体混合物中生成非自然结构以实现可调相平衡特性
  • 批准号:
    1706978
  • 财政年份:
    2017
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
UNS: Collaborative Research: Non-Membrane, Low Temperature and Low Emission Water Desalination Using Directional Solvent
UNS:合作研究:使用定向溶剂的非膜、低温、低排​​放海水淡化
  • 批准号:
    1512113
  • 财政年份:
    2015
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
  • 批准号:
    2327349
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
  • 批准号:
    2327422
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了