RII Track-4: Optimizing the Chemistry of Heterointerfaces in Photovoltaics: A Combination of Electronic Structure Calculations and Machine Learning Approach
RII Track-4:优化光伏异质界面的化学:电子结构计算和机器学习方法的结合
基本信息
- 批准号:1929206
- 负责人:
- 金额:$ 15.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Material properties are often linked to the atomic structure and chemistry of its internal interfaces. Among the internal interfaces, heterointerfaces are boundaries separating two materials with different atomic structure and chemistry. The atomic structure and chemistry of these heterointerfaces are complex and cannot be easily predicted from the individual materials that form the heterointerface. This complexity increases exponentially in multi-component heterointerfaces as it involves a vast number of chemical possibilities at the interface. Thus, designing the chemistry of a novel multi-component heterointerface with a targeted material property is a challenging task. This research project aims to enhance our current capability to determine the chemistry of a multi-component heterointerface with a targeted electronic property for photovoltaic applications using a combination of electronic structure calculations and machine learning approach. Machine learning tools can substantially reduce the time needed to identify the chemistry of a heterointerface that meets a desired electronic property need by efficiently extracting hidden chemistry-property relationships, a key factor toward accelerated discovery of novel heterointerface. The proposed project addresses the important federal government mandate of Materials Genome Initiative, the objective of which was to substantially reduce the time and cost to discover, manufacture, and deploy advanced materials.Multicomponent heterointerfaces have long intrigued materials scientists and physicists, in part, because of the sheer complexity of their atomic and electronic structure and chemistry. Such complexity can make designing a novel multi-component heterointerface with a targeted material property a non-trivial task. This is because navigating the vast combinatorial chemical and configurational possibilities between multiple elements at the interface is simply too large. This research project aims to design the chemical composition of a heterointerface for photovoltaic application with a targeted electronic property using a combination of electronic structure calculations and machine learning approach. More specially, the PI plans (a) to develop an in-depth understanding of the underlying physics that determines the electronic and atomic structure of the heterointerface using electronic structure calculations; and (b) to apply machine learning tools to explore hidden chemistry-property relationships of the interface, to predict the chemistry of the heterointerface for a desired electronic property. The proposed approach is a departure from the traditional time-consuming and expensive Edisonian trial-and-error approach of synthesis-testing experimental cycles; thus, it can substantially accelerate materials discovery. The PI anticipates that upon completion of this project a generic computational template to investigate structure-chemistry-property relationship of highly complex multi-component heterointerfaces will be generated. Finally, machine learning will be an integral part of future materials discovery. The knowledge gained from this project will help train student(s) on machine learning tools and their utility in materials research, increasing their exposure early in their careers to this growing and influential materials science field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
材料特性通常与其内部界面的原子结构和化学性质有关。在内部界面中,异质界面是分隔具有不同原子结构和化学性质的两种材料的边界。这些异质界面的原子结构和化学性质是复杂的,并且不能从形成异质界面的单个材料容易地预测。这种复杂性在多组分异质界面中呈指数级增加,因为它涉及界面处的大量化学可能性。因此,设计具有目标材料性质的新型多组分异质界面的化学性质是一项具有挑战性的任务。该研究项目旨在提高我们目前的能力,以确定多组分异质界面的化学性质,并使用电子结构计算和机器学习方法相结合的光伏应用的目标电子特性。机器学习工具可以通过有效地提取隐藏的化学-性质关系,大大减少识别满足所需电子性质需求的异质界面的化学性质所需的时间,这是加速发现新型异质界面的关键因素。该项目的目标是大大减少发现、制造和部署先进材料的时间和成本。多组分异质界面长期以来一直吸引着材料科学家和物理学家,部分原因是它们的原子和电子结构以及化学性质的复杂性。这种复杂性可以使设计具有目标材料性质的新型多组分异质界面成为一项重要的任务。这是因为在界面处的多个元素之间导航巨大的组合化学和构型可能性实在是太大了。该研究项目旨在设计具有目标电子特性的光伏应用异质界面的化学组成,使用电子结构计算和机器学习方法相结合。更具体地说,PI计划(a)使用电子结构计算深入了解决定异质界面电子和原子结构的基础物理学;(B)应用机器学习工具探索界面隐藏的化学性质关系,预测异质界面的化学性质以获得所需的电子性质。所提出的方法是从传统的耗时和昂贵的爱迪生试错法的合成测试实验周期的出发,因此,它可以大大加快材料的发现。PI预计,在完成该项目后,将生成一个通用计算模板,用于研究高度复杂的多组分异质界面的结构-化学-性质关系。 最后,机器学习将成为未来材料发现的一个组成部分。从该项目中获得的知识将有助于培训学生机器学习工具及其在材料研究中的实用性,增加他们在职业生涯早期对这个不断发展和有影响力的材料科学领域的接触。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samrat Choudhury其他文献
Characterization of U-10Zr-2Sn-2Sb and U-10Zr-2Sn-2Sb-4Ln to assess Sn+Sb as a mixed additive system to bind lanthanides
- DOI:
10.1016/j.jnucmat.2018.08.017 - 发表时间:
2018-11-01 - 期刊:
- 影响因子:
- 作者:
Michael T. Benson;Yi Xie;James A. King;Kevin R. Tolman;Robert D. Mariani;Indrajit Charit;Jinsuo Zhang;Michael P. Short;Samrat Choudhury;Rabi Khanal;Nathan Jerred - 通讯作者:
Nathan Jerred
Nd, SbNd and Sb<sub>3</sub>Nd<sub>4</sub> and their interactions with the cladding alloy HT9
- DOI:
10.1016/j.jnucmat.2020.152387 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:
- 作者:
Nathan D. Jerred;Rabi Khanal;Michael T. Benson;Robert D. Mariani;Samrat Choudhury;Indrajit Charit - 通讯作者:
Indrajit Charit
Prediction of electrohydrodynamic printing behavior using machine learning approaches
- DOI:
10.1007/s00170-025-15064-2 - 发表时间:
2025-01-29 - 期刊:
- 影响因子:3.100
- 作者:
Yizhou Lu;James Treadway;Prashant Ghimire;Yiwei Han;Samrat Choudhury - 通讯作者:
Samrat Choudhury
Do Orthopedic Surgery Residency Program Web Sites Address Diversity and Inclusion?
骨科住院医师计划网站是否注重多元化和包容性?
- DOI:
10.1177/15563316211037661 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ryan J. Mortman;A. Gu;Peter Z. Berger;Samrat Choudhury;Simone A. Bernstein;Seth Stake;Safa C. Fassihi;S. Thakkar;Hazel Victoria Campbell - 通讯作者:
Hazel Victoria Campbell
Evaluation of Sb-Nd and Te-Nd phases within the U-Zr fuel matrix and their interactions with HT9 alloy
- DOI:
10.1016/j.jnucmat.2024.154966 - 发表时间:
2024-04-15 - 期刊:
- 影响因子:
- 作者:
Nathan D. Jerred;Rabi Khanal;Michael T. Benson;Samrat Choudhury;Indrajit Charit - 通讯作者:
Indrajit Charit
Samrat Choudhury的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samrat Choudhury', 18)}}的其他基金
RII Track-4: Optimizing the Chemistry of Heterointerfaces in Photovoltaics: A Combination of Electronic Structure Calculations and Machine Learning Approach
RII Track-4:优化光伏异质界面的化学:电子结构计算和机器学习方法的结合
- 批准号:
2150816 - 财政年份:2021
- 资助金额:
$ 15.21万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
- 批准号:
2324714 - 财政年份:2024
- 资助金额:
$ 15.21万 - 项目类别:
Standard Grant
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 15.21万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 15.21万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 15.21万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 15.21万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 15.21万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 15.21万 - 项目类别:
Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 15.21万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
- 批准号:
2327422 - 财政年份:2024
- 资助金额:
$ 15.21万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 15.21万 - 项目类别:
Standard Grant