CAREER: The Theoretical Foundations of Symmetric Cryptography
职业:对称密码学的理论基础
基本信息
- 批准号:1930117
- 负责人:
- 金额:$ 28.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-12-15 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cryptography is essential to ensure confidentiality and integrity of information. Due to their practicality, symmetric algorithms where the same secret key is used by the sender and the recipient underlie most practical deployments of cryptographic techniques. However, also as a result of this, symmetric cryptography suffers from an inherent tension between real world efficiency demands and provable security guarantees. This project investigates new technical advances aimed at narrowing the gap between provable security and the practical demands of symmetric cryptography.The project develops new cryptographic algorithms and proof techniques, drawing from techniques in theoretical computer science, applied mathematics, and information theory. This involves the study of combinatorial problems whose solutions yield security proofs for existing and new encryption paradigms, and the development of new provably secure methods to encrypt data from arbitrary domains. The project identifies widely deployed cryptographic methods without provable security guarantees, introduces new assumptions on their components and new frameworks to validate their security with proofs, and explores the tradeoff between efficiency and security of symmetric cryptographic algorithms. The project will organize an annual cryptography academy targeted at economically disadvantaged high-school students, to increase their interest and representation in computing.
密码学对于确保信息的机密性和完整性至关重要。由于其实用性,对称算法是大多数密码技术实际部署的基础,其中发送方和接收方使用相同的密钥。然而,同样由于这一点,对称密码术在现实世界的效率要求和可证明的安全保证之间存在内在的矛盾。该项目研究新的技术进展,旨在缩小可证明安全性与对称密码的实际需求之间的差距。该项目借鉴理论计算机科学、应用数学和信息论的技术,开发新的密码算法和证明技术。这涉及对组合问题的研究,这些问题的解决方案为现有的和新的加密范例提供了安全证明,以及开发新的可证明安全的方法来加密来自任意域的数据。该项目确定了没有可证明安全保证的广泛应用的密码方法,对其组件和新框架引入了新的假设以验证其安全性,并探索了对称密码算法的效率和安全性之间的权衡。该项目将针对经济困难的高中生组织一年一度的密码学院,以提高他们对计算的兴趣和代表性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefano Tessaro其他文献
Optimally Secure Block Ciphers from Ideal Primitives
- DOI:
10.1007/978-3-662-48800-3_18 - 发表时间:
2015-11 - 期刊:
- 影响因子:0
- 作者:
Stefano Tessaro - 通讯作者:
Stefano Tessaro
On Seedless PRNGs and Premature Next
关于无核 PRNG 和过早的下一步
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Sandro Coretti;Y. Dodis;Harish Karthikeyan;Noah Stephens;Stefano Tessaro - 通讯作者:
Stefano Tessaro
Secret-Key Authentication Beyond the Challenge-Response Paradigm : Definitional Issues and New Protocols
超越挑战-响应范式的秘密密钥身份验证:定义问题和新协议
- DOI:
10.5220/0003520802870292 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
P. Mol;Stefano Tessaro - 通讯作者:
Stefano Tessaro
Basing PRFs on Constant-Query Weak PRFs: Minimizing Assumptions for Efficient Symmetric Cryptography
基于恒定查询弱 PRF 的 PRF:最小化高效对称密码学的假设
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
U. Maurer;Stefano Tessaro - 通讯作者:
Stefano Tessaro
Public-Seed Pseudorandom Permutations
公共种子伪随机排列
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Pratik Soni;Stefano Tessaro - 通讯作者:
Stefano Tessaro
Stefano Tessaro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefano Tessaro', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Theoretical Foundations of Block Ciphers
协作研究:SaTC:核心:媒介:分组密码的理论基础
- 批准号:
2154174 - 财政年份:2022
- 资助金额:
$ 28.81万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: A Concrete Look at Advanced Cryptography
SaTC:核心:中:高级密码学的具体观察
- 批准号:
2026774 - 财政年份:2020
- 资助金额:
$ 28.81万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Memory-hard Cryptography
SaTC:核心:小:内存困难的密码学
- 批准号:
1926324 - 财政年份:2018
- 资助金额:
$ 28.81万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Memory-hard Cryptography
SaTC:核心:小:内存困难的密码学
- 批准号:
1719146 - 财政年份:2017
- 资助金额:
$ 28.81万 - 项目类别:
Standard Grant
CAREER: The Theoretical Foundations of Symmetric Cryptography
职业:对称密码学的理论基础
- 批准号:
1553758 - 财政年份:2016
- 资助金额:
$ 28.81万 - 项目类别:
Continuing Grant
TWC: Small: Better Security for Efficient Secret-Key Cryptography
TWC:小:高效密钥加密的更好安全性
- 批准号:
1423566 - 财政年份:2014
- 资助金额:
$ 28.81万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Theoretical foundations for deep learning and large-scale AI models
职业:深度学习和大规模人工智能模型的理论基础
- 批准号:
2339904 - 财政年份:2024
- 资助金额:
$ 28.81万 - 项目类别:
Continuing Grant
CAREER: Theoretical Foundations for Learning Network Dynamics
职业:学习网络动力学的理论基础
- 批准号:
2338855 - 财政年份:2024
- 资助金额:
$ 28.81万 - 项目类别:
Continuing Grant
CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
- 批准号:
2340482 - 财政年份:2024
- 资助金额:
$ 28.81万 - 项目类别:
Continuing Grant
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
- 批准号:
2347760 - 财政年份:2023
- 资助金额:
$ 28.81万 - 项目类别:
Continuing Grant
CAREER: Theoretical Foundations of Modern Machine Learning Paradigms: Generative and Out-of-Distribution
职业:现代机器学习范式的理论基础:生成式和非分布式
- 批准号:
2238523 - 财政年份:2023
- 资助金额:
$ 28.81万 - 项目类别:
Continuing Grant
CAREER: Theoretical Foundations of Offline Reinforcement Learning
职业:离线强化学习的理论基础
- 批准号:
2141781 - 财政年份:2022
- 资助金额:
$ 28.81万 - 项目类别:
Continuing Grant
CAREER: Towards theoretical foundations of neural network based representation learning
职业:迈向基于神经网络的表示学习的理论基础
- 批准号:
2145703 - 财政年份:2022
- 资助金额:
$ 28.81万 - 项目类别:
Continuing Grant
CAREER: Theoretical Foundations for Probabilistic Models with Dense Random Matrices
职业:密集随机矩阵概率模型的理论基础
- 批准号:
1750362 - 财政年份:2018
- 资助金额:
$ 28.81万 - 项目类别:
Continuing Grant
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
- 批准号:
1752614 - 财政年份:2018
- 资助金额:
$ 28.81万 - 项目类别:
Continuing Grant
CAREER: Theoretical foundations of neural networks - representation, optimization, and generalization
职业:神经网络的理论基础——表示、优化和泛化
- 批准号:
1750051 - 财政年份:2018
- 资助金额:
$ 28.81万 - 项目类别:
Continuing Grant