Collaborative Research: Bioinspired liquid-gated membranes reduce biofouling
合作研究:仿生液体门控膜减少生物污垢
基本信息
- 批准号:1930710
- 负责人:
- 金额:$ 30.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ultrafiltration membranes are considered the 'state-of-the-art' material for water treatment, because they effectively remove particulates and waterborne pathogens from drinking water. Unfortunately, over time, membranes become fouled and require cleaning, which increases water treatment process downtime. Improving membrane lifetime is vital to decreasing the cost and energy required to produce clean water. In nature, the Nepenthes Pitcher Plant uses a thin, immobilized liquid layer to create an ultra-slippery surface which causes insects to slide into its cup. Inspired by the pitcher plant, this research project will develop a new approach to membrane design that reduces the adhesion of foulants and thereby enables the membrane's long-term operation. By properly selecting a stable 'gating liquid' that provides a thin protective layer on the membrane, reversible pore gates are created that quickly open and shut to enable liquid transport while reducing the ability of foulants to attach. Furthermore, when pressure is released, the gating liquid refills the pores, dislodging contaminants trapped within the pores and enabling flux recovery. In addition to improving the functionality of membranes for water purification, understanding the materials-biology interface will help inform the design of new membranes for a broad range of separations, including food processing, blood filtration, and protein purification. A key component of this research is providing an experiential platform to give women and underrepresented groups the confidence and tools to become successful engineers. This research project will engineer high-flux liquid-gated membranes that resist biofouling without the use of biocides or physical cleaning. The approach employs fabricating liquid-gated membranes using non-toxic perfluoropolyether liquids with various viscosities systematically paired with fluorinated polyethersulfone ultrafiltration membranes to establish a continuous, stable liquid gate. Data acquired from pure water flux experiments as a function of transmembrane pressures will establish the membrane's performance and in-line liquid-gate regeneration capabilities. This experimental data will be benchmarked against both theoretical and chip-based models. The biofouling resistance properties of liquid-gated membranes will be established using organic and biological foulants. This research project provides a critical translation between the structure and properties of liquid-gated membranes and the use of a bioinspired materials approach to reduce the attachment of microbes to membranes while enabling a facile mechanism for flux recovery. This research project will result in numerous new research experiences for women and underrepresented groups both at the undergraduate and graduate level at the University of Massachusetts and the University of Maine. Collaboratively, this team will develop, pilot, and broadly disseminate an educational module called, 'Bioinspired Clean Water Solutions' to middle and high school students. This project is jointly funded by the Molecular Separations program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超滤膜被认为是水处理的“最先进”材料,因为它们可以有效地去除饮用水中的颗粒物和水传播病原体。不幸的是,随着时间的推移,膜会变脏并需要清洗,这增加了水处理过程的停机时间。提高膜寿命对于降低生产清洁水所需的成本和能源至关重要。在自然界中,猪笼草猪笼草使用一层薄薄的、固定的液体层来创造一个超滑的表面,使昆虫滑入它的杯子。受猪笼草的启发,该研究项目将开发一种新的膜设计方法,减少污垢的粘附,从而使膜的长期运行。通过适当地选择在膜上提供薄保护层的稳定的“门控液体”,产生了可逆的孔门,其快速打开和关闭以使液体能够输送,同时降低污垢附着的能力。此外,当压力释放时,选通液体重新填充孔,从而去除捕获在孔内的污染物并实现通量恢复。除了改善水净化膜的功能外,了解材料-生物界面将有助于为广泛的分离设计新膜,包括食品加工,血液过滤和蛋白质纯化。这项研究的一个关键组成部分是提供一个经验平台,让女性和代表性不足的群体有信心和工具成为成功的工程师。该研究项目将设计高通量液体门控膜,在不使用生物杀灭剂或物理清洁的情况下抵抗生物污垢。该方法采用使用具有各种粘度的无毒全氟聚醚液体系统地与氟化聚醚砜超滤膜配对来制造液体门控膜,以建立连续、稳定的液体门。从纯水通量实验中获得的数据作为跨膜压力的函数将确定膜的性能和在线液门再生能力。该实验数据将与理论模型和基于芯片的模型进行基准测试。将使用有机和生物污垢建立液体门控膜的抗生物污垢性能。该研究项目提供了液体门控膜的结构和性能之间的关键转换,以及使用生物启发材料方法来减少微生物对膜的附着,同时实现通量恢复的简易机制。这一研究项目将为马萨诸塞州大学和缅因州大学的本科生和研究生阶段的妇女和代表性不足的群体带来许多新的研究经验。通过合作,该团队将开发,试点和广泛传播一个名为“生物启发的清洁水解决方案”的教育模块,以初中和高中学生。该项目由分子分离计划和刺激竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caitlin Howell其他文献
In situ investigations of biological molecules using vibrational sum-frequency-generation spectroscopy
使用振动和频发生光谱法对生物分子进行原位研究
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Caitlin Howell - 通讯作者:
Caitlin Howell
Inhibiting Host Protein Deposition on Urinary Catheters Reduces Urinary Tract Infections
抑制导尿管上的宿主蛋白沉积可减少尿路感染
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
M. Andersen;C. Fong;A. L. La Bella;Alex Molesan;M. Champion;Caitlin Howell;A. Flores - 通讯作者:
A. Flores
Fundamental Symmetries, Neutrons, and Neutrinos (FSNN): Whitepaper for the 2023 NSAC Long Range Plan
基本对称性、中子和中微子 (FSNN):2023 年 NSAC 长期计划白皮书
- DOI:
10.2172/1975603 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
B. Acharya;C. Adams;A. Aleksandrova;K. Alfonso;Peibo An;S. Baeßler;A. Balantekin;P. Barbeau;F. Bellini;V. Bellini;R. Beminiwattha;J. Bernauer;Tanmoy Bhattacharya;M. Bishof;A. Bolotnikov;P. Breur;M. Brodeur;J. Brodsky;L. Broussard;T. Brunner;D. Burdette;J. Caylor;M. Chiu;V. Cirigliano;J. Clark;S. Clayton;T. Daniels;L. Darroch;Z. Davoudi;A. Gouvea;W. Dekens;M. Demarteau;D. Demille;A. Deshpande;J. Detwiler;G. Dodson;M. Dolinski;S. Elliott;J. Engel;J. Erler;B. Filippone;N.Fomin;J. Formaggio;F. Friesen;J.Fry;B. Fujikawa;G. Fuller;K. Fuyuto;A. Gallant;G. Gallina;A. G. Ruiz;R. Ruiz;S. Gardner;F. Gonzalez;G. Gratta;J. Gruszko;V. Gudkov;V. Guiseppe;T. Gutierrez;E. Hansen;C. Hardy;W. Haxton;L. Hayen;S. Hedges;K. Heeger;M. Heffner;J. Heise;R. Henning;H. Hergert;D. Hertzog;D. H. Aguilar;J. Holt;S. Hoogerheide;E. Hoppe;M. Horoi;Caitlin Howell;M. Huang;N. Hutzler;K. Imam;T. Ito;A. Jamil;R. Janssens;A. Jayich;B. Jones;P. Kammel;K. Liu;V. Khachatryan;P. King;J. Klein;J. Kneller;Y. Kolomensky;W. Korsch;R. Krucken;K. S. Kumar;K. Launey;D. Lawrence;K. Leach;B. Lehnert;B. Lenardo;Z. Li;H.;B. Longfellow;S. Lopez;C. Lunardini;R. Maclellan;D. Markoff;R. Maruyama;D. Mathews;D. Melconian;E. Mereghetti;P. Mohanmurthy;D. Moore;P. Mueller;H. Mumm;W. Nazarewicz;J. Newby;A. Nicholson;E. Novitski;J. Ondze;Thomas O'Donnell;G. O. Gann;J. Orrell;J. Ouellet;D. Parno;K. Paschke;S. Pastore;R. Pattie;A. A. Petrov;M. Pitt;B. Plaster;D. Počanić;A. Pocar;A. Poon;D. Radford;H. Rahangdale;B. Rasco;H. Rasiwala;R. Redwine;A. Ritz;L. Rogers;G. Ron;R. Saldanha;S. Sangiorgio;G. Sargsyan;A. Saunders;G. Savard;D. Schaper;K. Scholberg;N. Scielzo;C. Seng;A. Shindler;J. Singh;M. Singh;V. Singh;W. Snow;A. Soma;P. Souder;D. Speller;J. Stachurska;P. T. Surukuchi;B. T. Oregui;O. Tomalak;J. A. Torres;O. A. Tyuka;B. VanDevender;L. Varriano;R. Vogt;A. Walker;K. Wamba;S. Watkins;F. Wietfeldt;W. D. Williams;J. Wilson;L. Winslow;X. Yan;L. Yang;A. R. Young;X. Zheng;Y. Zhou - 通讯作者:
Y. Zhou
Orientation changes in surface-bound hybridized DNA undergoing preparation for <em>ex situ</em> spectroscopic measurements
- DOI:
10.1016/j.cplett.2011.07.096 - 发表时间:
2011-09-15 - 期刊:
- 影响因子:
- 作者:
Caitlin Howell;Hicham Hamoudi;Stefan Heissler;Patrick Koelsch;Michael Zharnikov - 通讯作者:
Michael Zharnikov
Non-enzymatic depolymerization of cotton cellulose by fungal mimicking metabolites
模拟真菌代谢物对棉纤维素的非酶解聚
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
A. Hastrup;A. Hastrup;Caitlin Howell;B. Jensen;F. Green - 通讯作者:
F. Green
Caitlin Howell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caitlin Howell', 18)}}的其他基金
PFI-RP: Mass-Manufacturing of Low-Cost, Lower Environmental Impact Microfluidics
PFI-RP:大规模制造低成本、低环境影响的微流体
- 批准号:
2234150 - 财政年份:2023
- 资助金额:
$ 30.44万 - 项目类别:
Standard Grant
RII Track-4: Fast, Mass-Manufacture-Ready Prototyping of Microfluidic Water Purification Systems
RII Track-4:微流体水净化系统的快速、可批量生产的原型设计
- 批准号:
2032482 - 财政年份:2021
- 资助金额:
$ 30.44万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Detection and Analysis of Airborne Coronavirus with Bioinspired Membranes
EAGER:合作研究:利用仿生膜检测和分析空气传播的冠状病毒
- 批准号:
2029378 - 财政年份:2020
- 资助金额:
$ 30.44万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Bioinspired High Energy Recycling Mechanism Ankle Foot Prosthesis
合作研究:仿生高能回收机制踝足假肢
- 批准号:
2231031 - 财政年份:2023
- 资助金额:
$ 30.44万 - 项目类别:
Standard Grant
Collaborative Research: Bioinspired High Energy Recycling Mechanism Ankle Foot Prosthesis
合作研究:仿生高能回收机制踝足假肢
- 批准号:
2231032 - 财政年份:2023
- 资助金额:
$ 30.44万 - 项目类别:
Standard Grant
Collaborative Research: Design, Flight Control, and Autonomous Navigation of Bioinspired Morphing Micro Aerial Vehicles for Operation in Confined Spaces
合作研究:用于密闭空间操作的仿生变形微型飞行器的设计、飞行控制和自主导航
- 批准号:
2140650 - 财政年份:2022
- 资助金额:
$ 30.44万 - 项目类别:
Standard Grant
Collaborative Research: A Bioinspired Approach towards Sustainable Membranes for Resilient Brine Treatment
合作研究:用于弹性盐水处理的可持续膜的仿生方法
- 批准号:
2226505 - 财政年份:2022
- 资助金额:
$ 30.44万 - 项目类别:
Standard Grant
Collaborative Research: A Bioinspired Approach towards Sustainable Membranes for Resilient Brine Treatment
合作研究:用于弹性盐水处理的可持续膜的仿生方法
- 批准号:
2226501 - 财政年份:2022
- 资助金额:
$ 30.44万 - 项目类别:
Standard Grant
Collaborative Research: Design, Flight Control, and Autonomous Navigation of Bioinspired Morphing Micro Aerial Vehicles for Operation in Confined Spaces
合作研究:用于密闭空间操作的仿生变形微型飞行器的设计、飞行控制和自主导航
- 批准号:
2142519 - 财政年份:2022
- 资助金额:
$ 30.44万 - 项目类别:
Standard Grant
Collaborative Research: 3D Printing of Bioinspired Hierarchical Structures with Controllable Roughness for Stable and Long-term Air Retention
合作研究:3D 打印具有可控粗糙度的仿生分层结构,以实现稳定和长期的空气保留
- 批准号:
2113727 - 财政年份:2021
- 资助金额:
$ 30.44万 - 项目类别:
Standard Grant
Collaborative Research: 3D Printing of Bioinspired Hierarchical Structures with Controllable Roughness for Stable and Long-term Air Retention
合作研究:3D 打印具有可控粗糙度的仿生分层结构,以实现稳定和长期的空气保留
- 批准号:
2114119 - 财政年份:2021
- 资助金额:
$ 30.44万 - 项目类别:
Standard Grant
Collaborative Research: IRES Track III: Bioinspired Autonomy in Natural Environments
合作研究:IRES Track III:自然环境中的仿生自治
- 批准号:
1954166 - 财政年份:2020
- 资助金额:
$ 30.44万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Detection and analysis of airborne coronavirus with bioinspired membranes
EAGER:合作研究:利用仿生膜检测和分析空气中的冠状病毒
- 批准号:
2029371 - 财政年份:2020
- 资助金额:
$ 30.44万 - 项目类别:
Standard Grant