EAGER: Collaborative Research: Detection and Analysis of Airborne Coronavirus with Bioinspired Membranes

EAGER:合作研究:利用仿生膜检测和分析空气传播的冠状病毒

基本信息

  • 批准号:
    2029378
  • 负责人:
  • 金额:
    $ 15.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

The spread of biological pathogens via aerosolized droplets continues to be of primary concern during the current COVID-19 pandemic. Thus, the ability to capture and analyze aerosolized pathogens is critical to understand and mitigate the potential for reoccurring outbreaks of COVID-19 or other novel pathogens. To address this need, an interdisciplinary research team from the University of Maine and the University of Massachusetts Amherst will engineer a bioinspired technology that facilitates the efficient collection of viruses from bioaerosols. The inspiration for the technology is the carnivorous Nepenthes pitcher plant, which has a slippery rim and inner walls causing insects to fall and become trapped within its digestive fluid. By engineering a composite material comprised of a liquid layer on the surface of a membrane, the capture and analysis of pathogenic particles will be enabled. The team will optimize the membrane system to work with SARS-CoV-2, the virus responsible for the COVID-19 outbreak, in aerosolized droplets that mimic those released during talking, coughing, and sneezing. This work will fill a critical gap in current methods of monitoring the spread of disease through fast-tracked research and development of an inexpensive, high-throughput, and widely deployable technology that can be continuously operated at high-risk locations, such as hospitals, elder-care facilities, and travel hubs. Disease-causing agents such as the novel coronavirus (SARS-CoV-2) that take form as bioaerosols present unique challenges for disease surveillance, containment, and treatment. Previous attempts to design aerosol collection systems for viruses have had limited success due to either the difficulty of retrieving intact virus particles from a solid filter surface or inadequate throughput. This project seeks to address these limitations by adapting a liquid-gated membrane (LGM) system inspired by the Nepenthes pitcher plant. The system adaptation employs a water-immiscible liquid on the surface of the membrane that creates a reusable, reversible liquid trap immobilizing live pathogenic particles within a thin liquid shell at the membrane surface. A model reovirus will be used to develop the LGM system, and capture efficiency will be assessed using reverse transcription-quantitative polymerase chain reaction, infectivity assays, and structural assessment before the technology is validated using SARS-CoV-2. The team will explore the development of new intellectual property that would be well-aligned with manufacturing industries of both Maine and Massachusetts, including pulp and paper products.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在当前的新冠肺炎大流行期间,通过雾化飞沫传播生物病原体仍然是首要关注的问题。因此,捕获和分析气雾化病原体的能力对于了解和减少新冠肺炎或其他新病原体再次爆发的可能性至关重要。为了满足这一需求,来自缅因州大学和马萨诸塞州阿默斯特大学的一个跨学科研究团队将设计一种生物灵感技术,促进从生物气溶胶中高效地收集病毒。这项技术的灵感来自肉食性猪笼草,它有一个光滑的边缘和内壁,会导致昆虫坠落并被困在它的消化液中。通过在膜表面设计一种由液体层组成的复合材料,将能够捕获和分析致病粒子。该研究小组将优化膜系统,以与导致新冠肺炎爆发的SARS-CoV-2病毒一起工作,在雾化微滴中模仿说话、咳嗽和打喷嚏时释放的微滴。这项工作将通过快速研究和开发一种廉价、高通量和可广泛部署的技术来填补当前监测疾病传播方法的一个关键空白,该技术可以在医院、老年护理设施和旅游枢纽等高风险地点持续运行。新型冠状病毒(SARS-CoV-2)等致病因子以生物气雾剂的形式出现,对疾病监测、控制和治疗提出了独特的挑战。以前设计病毒气溶胶收集系统的尝试由于难以从固体过滤器表面回收完整的病毒颗粒或吞吐量不足而取得了有限的成功。该项目寻求通过采用受猪笼草植物启发的液体门控膜(LGM)系统来解决这些限制。系统适应在膜表面使用不溶于水的液体,从而创建可重复使用的可逆液体陷阱,将活的病原体颗粒固定在膜表面的薄液壳内。模型呼肠孤病毒将用于开发LGM系统,在使用SARS-CoV-2验证该技术之前,将使用逆转录-定量聚合酶链式反应、传染性分析和结构评估来评估捕获效率。该团队将探索与缅因州和马萨诸塞州制造业良好结合的新知识产权的开发,包括纸浆和造纸产品。这一奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Caitlin Howell其他文献

In situ investigations of biological molecules using vibrational sum-frequency-generation spectroscopy
使用振动和频发生光谱法对生物分子进行原位研究
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Caitlin Howell
  • 通讯作者:
    Caitlin Howell
Inhibiting Host Protein Deposition on Urinary Catheters Reduces Urinary Tract Infections
抑制导尿管上的宿主蛋白沉积可减少尿路感染
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Andersen;C. Fong;A. L. La Bella;Alex Molesan;M. Champion;Caitlin Howell;A. Flores
  • 通讯作者:
    A. Flores
Fundamental Symmetries, Neutrons, and Neutrinos (FSNN): Whitepaper for the 2023 NSAC Long Range Plan
基本对称性、中子和中微子 (FSNN):2023 年 NSAC 长期计划白皮书
  • DOI:
    10.2172/1975603
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Acharya;C. Adams;A. Aleksandrova;K. Alfonso;Peibo An;S. Baeßler;A. Balantekin;P. Barbeau;F. Bellini;V. Bellini;R. Beminiwattha;J. Bernauer;Tanmoy Bhattacharya;M. Bishof;A. Bolotnikov;P. Breur;M. Brodeur;J. Brodsky;L. Broussard;T. Brunner;D. Burdette;J. Caylor;M. Chiu;V. Cirigliano;J. Clark;S. Clayton;T. Daniels;L. Darroch;Z. Davoudi;A. Gouvea;W. Dekens;M. Demarteau;D. Demille;A. Deshpande;J. Detwiler;G. Dodson;M. Dolinski;S. Elliott;J. Engel;J. Erler;B. Filippone;N.Fomin;J. Formaggio;F. Friesen;J.Fry;B. Fujikawa;G. Fuller;K. Fuyuto;A. Gallant;G. Gallina;A. G. Ruiz;R. Ruiz;S. Gardner;F. Gonzalez;G. Gratta;J. Gruszko;V. Gudkov;V. Guiseppe;T. Gutierrez;E. Hansen;C. Hardy;W. Haxton;L. Hayen;S. Hedges;K. Heeger;M. Heffner;J. Heise;R. Henning;H. Hergert;D. Hertzog;D. H. Aguilar;J. Holt;S. Hoogerheide;E. Hoppe;M. Horoi;Caitlin Howell;M. Huang;N. Hutzler;K. Imam;T. Ito;A. Jamil;R. Janssens;A. Jayich;B. Jones;P. Kammel;K. Liu;V. Khachatryan;P. King;J. Klein;J. Kneller;Y. Kolomensky;W. Korsch;R. Krucken;K. S. Kumar;K. Launey;D. Lawrence;K. Leach;B. Lehnert;B. Lenardo;Z. Li;H.;B. Longfellow;S. Lopez;C. Lunardini;R. Maclellan;D. Markoff;R. Maruyama;D. Mathews;D. Melconian;E. Mereghetti;P. Mohanmurthy;D. Moore;P. Mueller;H. Mumm;W. Nazarewicz;J. Newby;A. Nicholson;E. Novitski;J. Ondze;Thomas O'Donnell;G. O. Gann;J. Orrell;J. Ouellet;D. Parno;K. Paschke;S. Pastore;R. Pattie;A. A. Petrov;M. Pitt;B. Plaster;D. Počanić;A. Pocar;A. Poon;D. Radford;H. Rahangdale;B. Rasco;H. Rasiwala;R. Redwine;A. Ritz;L. Rogers;G. Ron;R. Saldanha;S. Sangiorgio;G. Sargsyan;A. Saunders;G. Savard;D. Schaper;K. Scholberg;N. Scielzo;C. Seng;A. Shindler;J. Singh;M. Singh;V. Singh;W. Snow;A. Soma;P. Souder;D. Speller;J. Stachurska;P. T. Surukuchi;B. T. Oregui;O. Tomalak;J. A. Torres;O. A. Tyuka;B. VanDevender;L. Varriano;R. Vogt;A. Walker;K. Wamba;S. Watkins;F. Wietfeldt;W. D. Williams;J. Wilson;L. Winslow;X. Yan;L. Yang;A. R. Young;X. Zheng;Y. Zhou
  • 通讯作者:
    Y. Zhou
Orientation changes in surface-bound hybridized DNA undergoing preparation for <em>ex situ</em> spectroscopic measurements
  • DOI:
    10.1016/j.cplett.2011.07.096
  • 发表时间:
    2011-09-15
  • 期刊:
  • 影响因子:
  • 作者:
    Caitlin Howell;Hicham Hamoudi;Stefan Heissler;Patrick Koelsch;Michael Zharnikov
  • 通讯作者:
    Michael Zharnikov
Non-enzymatic depolymerization of cotton cellulose by fungal mimicking metabolites
模拟真菌代谢物对棉纤维素的非酶解聚
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Hastrup;A. Hastrup;Caitlin Howell;B. Jensen;F. Green
  • 通讯作者:
    F. Green

Caitlin Howell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Caitlin Howell', 18)}}的其他基金

PFI-RP: Mass-Manufacturing of Low-Cost, Lower Environmental Impact Microfluidics
PFI-RP:大规模制造低成本、低环境影响的微流体
  • 批准号:
    2234150
  • 财政年份:
    2023
  • 资助金额:
    $ 15.41万
  • 项目类别:
    Standard Grant
RII Track-4: Fast, Mass-Manufacture-Ready Prototyping of Microfluidic Water Purification Systems
RII Track-4:微流体水净化系统的快速、可批量生产的原型设计
  • 批准号:
    2032482
  • 财政年份:
    2021
  • 资助金额:
    $ 15.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Bioinspired liquid-gated membranes reduce biofouling
合作研究:仿生液体门控膜减少生物污垢
  • 批准号:
    1930710
  • 财政年份:
    2019
  • 资助金额:
    $ 15.41万
  • 项目类别:
    Standard Grant
Graduate Research Fellowship
研究生研究奖学金
  • 批准号:
    0840595
  • 财政年份:
    2008
  • 资助金额:
    $ 15.41万
  • 项目类别:
    Fellowship Award

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 15.41万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 15.41万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 15.41万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 15.41万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 15.41万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 15.41万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 15.41万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 15.41万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 15.41万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 15.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了