Collaborative:Elements:Cyberinfrastructure for Pedestrian Dynamics-Based Analysis of Infection Propagation Through Air Travel

协作:元素:基于行人动力学的航空旅行感染传播分析的网络基础设施

基本信息

  • 批准号:
    1931560
  • 负责人:
  • 金额:
    $ 9.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-11-01 至 2023-10-31
  • 项目状态:
    已结题

项目摘要

When people congregate - for example, at entertainment events, in crowds, and airplanes - they come into close contact with each other and can spread infectious diseases. The Disney World measles outbreak in 2016 is a prominent example. Air travel, in particular, is a leading factor in the spread of infections, and there have been several outbreaks of serious diseases that spread during air travel, such as SARS, H1N1 influenza, and tuberculosis. Public health policies and procedures for crowd management, boarding airplanes, etc. can help in mitigating the spread of disease, if these policies are science-based. The spread of directly transmitted diseases is governed by the movement patterns of people because the movement can bring an infected person close to others. The science of "pedestrian dynamics" provides mathematical models that can accurately simulate the movement of individuals in a crowd. These models allow scientists to understand how different policies, such as boarding procedures on planes, can prevent, or make worse, the transmission of infections. This project seeks to develop a novel software that will provide a variety of pedestrian dynamics models, infection spread models, as well as data so that scientists can analyze the effect of different mechanisms on the spread of directly transmitted diseases in crowded areas. The initial focus of this project is on air travel. However, the software can be extended to a broader scope of applications in movement analysis and epidemiology, such as in theme parks and sports venues. The project team is working closely with decision makers in airports, public health agencies, and the airline industry. This collaboration will lead to practical applications of this science that will improve public health. This project and the software will educate a wide range of scientists as well as students, in particular, students from under-represented groups, as well as professionals working in the public health fields.This project seeks to develop a novel software that will provide a variety of pedestrian dynamics models, infection spread models, as well as data so that scientists can analyze the effect of different mechanisms on the spread of directly transmitted diseases in crowded areas. The initial focus of this project is on air travel. However, the software can be extended to a broader scope of applications in movement analysis and epidemiology, such as in theme parks and sports venues. Development of the proposed software will involve several innovations. It will include a novel phylogeography model that links fine-scale human movement data with virus genetic information to more accurately model geographic diffusion of viruses. New models for pedestrian movement will enable modeling of complex human movement patterns. A recommendation system for the choice of pedestrian dynamics models and a domain specific language for the input of policies and human behaviors will enhance usability by researchers in diverse fields. Community building initiatives will catalyze inter-disciplinary research to ensures the long-term sustainability of the project through a critical mass of contributors and users.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当人们聚集在一起时--例如,在娱乐活动中、人群中和飞机上--他们会彼此密切接触,并可能传播传染病。2016年的迪士尼世界麻疹疫情就是一个突出的例子。特别是航空旅行,是传染病传播的主要因素,已经有几起严重疾病在航空旅行中传播的爆发,如SARS、H1N1流感和肺结核。人群管理、登机等方面的公共卫生政策和程序,如果是以科学为基础的,则有助于减轻疾病的传播。直接传播疾病的传播受人的流动模式的制约,因为流动可以使受感染者接近其他人。“行人动力学”科学提供了可以准确模拟人群中个体运动的数学模型。这些模型使科学家们能够了解不同的政策,例如飞机上的登机程序,如何预防或加剧感染的传播。该项目旨在开发一种新的软件,提供各种行人动力学模型,感染传播模型以及数据,以便科学家可以分析不同机制对拥挤地区直接传播疾病传播的影响。该项目最初的重点是航空旅行。然而,该软件可以扩展到更广泛的运动分析和流行病学应用范围,例如主题公园和体育场馆。该项目团队正在与机场、公共卫生机构和航空业的决策者密切合作。这种合作将导致这一科学的实际应用,从而改善公众健康。该项目和软件将教育广泛的科学家和学生,特别是来自代表性不足的群体的学生,以及在公共卫生领域工作的专业人员。该项目旨在开发一种新颖的软件,将提供各种行人动力学模型,感染传播模型,以及数据,以便科学家可以分析不同机制对拥挤地区直接传播疾病传播的影响。该项目最初的重点是航空旅行。然而,该软件可以扩展到更广泛的运动分析和流行病学应用范围,例如主题公园和体育场馆。拟议软件的开发将涉及几项创新。它将包括一个新的生物地理模型,该模型将精细规模的人类运动数据与病毒遗传信息联系起来,以更准确地模拟病毒的地理扩散。新的行人运动模型将能够模拟复杂的人类运动模式。行人动力学模型的选择和领域特定的语言输入的政策和人类行为的推荐系统将提高不同领域的研究人员的可用性。社区建设计划将促进跨学科的研究,以确保该项目的长期可持续性,通过一个关键质量的贡献者和用户。这个奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Scotch其他文献

Correction to: A systematic review of spatial decision support systems in public health informatics supporting the identification of high risk areas for zoonotic disease outbreaks
Linkages between animal and human health sentinel data
  • DOI:
    10.1186/1746-6148-5-15
  • 发表时间:
    2009-01-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Matthew Scotch;Lynda Odofin;Peter Rabinowitz
  • 通讯作者:
    Peter Rabinowitz

Matthew Scotch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Scotch', 18)}}的其他基金

Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
  • 批准号:
    2302969
  • 财政年份:
    2023
  • 资助金额:
    $ 9.95万
  • 项目类别:
    Standard Grant
Collaborative:RAPID: Leveraging New Data Sources to Analyze the Risk of COVID-19 in Crowded Locations
协作:RAPID:利用新数据源分析拥挤场所中的 COVID-19 风险
  • 批准号:
    2027529
  • 财政年份:
    2020
  • 资助金额:
    $ 9.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Petascale Simulation of Viral Infection Propagation Through Air Travel
合作研究:通过航空旅行传播病毒感染的千万亿级模拟
  • 批准号:
    1640911
  • 财政年份:
    2016
  • 资助金额:
    $ 9.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Simulation-Based Policy Analysis for Reducing Ebola Transmission Risk in Air Travel
合作研究:基于模拟的政策分析,降低航空旅行中的埃博拉传播风险
  • 批准号:
    1525012
  • 财政年份:
    2015
  • 资助金额:
    $ 9.95万
  • 项目类别:
    Standard Grant

相似国自然基金

地质样品中战略矿产元素电弧激发机理与分析方法研究
  • 批准号:
    JCZRLH202501244
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI驱动的工业微生物合成元件挖掘与产品智造
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
三星堆青铜器元素在绘画艺术中的创新转化路径研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于高分辨率光谱的系外行星大气元素丰度与质量关系的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
生物钟元件ZjRVE2在结缕草横生茎发生 中的调控机制解析
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
典型花青素异源生物合成途径酶元件的改造和调控
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
多元素(19F/23Na/31P/129Xe)磁共振成像前沿研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
传统宽PIN距NTC热敏元件智能制造升级与国产化关键技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
脉石英高温相变过程中包裹体内杂质元素迁移规律及其去除机理研究
  • 批准号:
    JCZRLH202501116
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
  • 批准号:
    2311092
  • 财政年份:
    2023
  • 资助金额:
    $ 9.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
  • 批准号:
    2311091
  • 财政年份:
    2023
  • 资助金额:
    $ 9.95万
  • 项目类别:
    Standard Grant
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
  • 批准号:
    2311716
  • 财政年份:
    2023
  • 资助金额:
    $ 9.95万
  • 项目类别:
    Standard Grant
Elements: Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure
元素:FPGA 加速云网络基础设施上同态加密机器学习的便携式库
  • 批准号:
    2311870
  • 财政年份:
    2023
  • 资助金额:
    $ 9.95万
  • 项目类别:
    Standard Grant
Elements: Science-i Cyberinfrastructure for Forest Ecosystem Research
要素:森林生态系统研究的 Science-i 网络基础设施
  • 批准号:
    2311762
  • 财政年份:
    2023
  • 资助金额:
    $ 9.95万
  • 项目类别:
    Standard Grant
Elements: Development of cyberinfrastructure to establish a scalable application of self-supervised machine learning for over a decade of NOAA's water column sonar data
要素:开发网络基础设施,以建立可扩展的自监督机器学习应用程序,用于 NOAA 十多年来的水柱声纳数据
  • 批准号:
    2311843
  • 财政年份:
    2023
  • 资助金额:
    $ 9.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ROCCI: Integrated Cyberinfrastructure for In Situ Lossy Compression Optimization Based on Post Hoc Analysis Requirements
合作研究:要素:ROCCI:基于事后分析要求的原位有损压缩优化的集成网络基础设施
  • 批准号:
    2247080
  • 财政年份:
    2022
  • 资助金额:
    $ 9.95万
  • 项目类别:
    Standard Grant
Elements: Open-Source Cyberinfrastructure as a Decision Engine for Socioeconomic Disaster Risk (DESDR)
要素:开源网络基础设施作为社会经济灾害风险决策引擎 (DESDR)
  • 批准号:
    2103794
  • 财政年份:
    2021
  • 资助金额:
    $ 9.95万
  • 项目类别:
    Standard Grant
Elements: Cyberinfrastructure for spin and charge transport calculation of partially disordered alloys
元素:部分无序合金自旋和电荷传输计算的网络基础设施
  • 批准号:
    2103958
  • 财政年份:
    2021
  • 资助金额:
    $ 9.95万
  • 项目类别:
    Standard Grant
Elements: Towards a Robust Cyberinfrastructure for NLP-based Search and Discoverability over Scientific Literature
要素:建立一个强大的网络基础设施,用于基于 NLP 的科学文献搜索和发现
  • 批准号:
    2104025
  • 财政年份:
    2021
  • 资助金额:
    $ 9.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了