Elements: Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure
元素:FPGA 加速云网络基础设施上同态加密机器学习的便携式库
基本信息
- 批准号:2311870
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Privacy Preserving Computations (PPC) that utilize Homomorphic Encryption (HE) to perform computations on encrypted data directly have become attractive recently. HE based Machine Learning (HE ML) inference enables preservation of privacy in a wide variety of application domains that range from healthcare, financial transactions, edge cyber physical systems, etc. Privacy sensitive applications that rely on processing in a public cloud or data center can use HE ML inference to preserve privacy. While HE ML inference offers strong privacy guarantees, computations on encrypted data are orders of magnitude slower than unencrypted computations and require significant hardware resources to make them attractive for end users. Emerging data centers and cloud platforms are augmented with Field Programmable Gate Arrays (FPGAs). With the fine grained programmable architecture of FPGAs, these platforms are well suited for accelerating HE ML.This work will leverage novel algorithmic, architectural and memory optimizations on FPGAs to develop a portable and configurable library to enable secure, resilient, and trustworthy cyberinfrastructure for end-to-end privacy sensitive ML inference. The library will provide FPGA accelerated Intellectual Property (IP) cores for HE kernels (L1 Library) as well as a FPGA Application Specific Processor (ASP) for inference of widely studied HE ML models (L2 Library). The library will support various HE schemes, security levels, machine learning models and FPGA platforms. It will include several software and hardware innovations along with various HE specific optimizations such as efficient data layout, memory efficient scheduling and scalable interconnect to maximize memory utilization and to improve data reuse using on-chip memory. Using the IP cores in the L1 Library, this project will compose a FPGA ASP with a domain-specific Instruction Set Architecture (ISA) and a compiler. The FPGA accelerator can be programmed in software to realize real-time HE ML computations. The library will be released to the Computer & Information Science & Engineering (CISE) communities, including Machine Learning, Software, and Data Science communities, to accelerate the adoption of homomorphic encryption for privacy preserving computations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
利用同态加密直接对加密数据进行计算的隐私保护计算(PPC)近来变得很有吸引力。基于HE的机器学习(HE ML)推理能够在医疗保健、金融交易、边缘网络物理系统等各种应用领域中保护隐私。依赖公共云或数据中心处理的隐私敏感应用可以使用HE ML推理来保护隐私。虽然HE ML推理提供了强大的隐私保证,但加密数据的计算比未加密的计算慢几个数量级,并且需要大量的硬件资源才能对最终用户有吸引力。新兴的数据中心和云平台通过现场可编程门阵列(FPGA)得到增强。凭借FPGA的细粒度可编程架构,这些平台非常适合加速HE ML。这项工作将利用FPGA上的新颖算法,架构和内存优化来开发一个便携式和可配置的库,以实现安全,弹性和值得信赖的网络基础设施,用于端到端隐私敏感的ML推理。该库将为HE内核(L1库)提供FPGA加速的知识产权(IP)内核,以及FPGA专用处理器(ASP),用于推断广泛研究的HE ML模型(L2库)。该库将支持各种HE方案,安全级别,机器学习模型和FPGA平台。它将包括几个软件和硬件创新沿着各种HE特定的优化,如高效的数据布局,内存高效调度和可扩展的互连,以最大限度地提高内存利用率,并提高数据重用使用片上存储器。利用L1库中的IP核,本项目将组成一个具有特定领域指令集体系结构(伊萨)和编译器的FPGA ASP。FPGA加速器可以在软件中编程以实现实时HE ML计算。该库将发布给计算机信息科学工程(CISE)社区,包括机器学习、软件和数据科学社区,以加速同态加密在隐私保护计算中的采用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Viktor Prasanna其他文献
Accelerating Deep Neural Network guided MCTS using Adaptive Parallelism
使用自适应并行加速深度神经网络引导的 MCTS
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuan Meng;Qian Wang;Tianxin Zu;Viktor Prasanna - 通讯作者:
Viktor Prasanna
PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms
PEARL:使用异构平台实现便携式、高效且高性能的深度强化学习
- DOI:
10.1145/3649153.3649193 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuan Meng;Michael Kinsner;Deshanand Singh;Mahesh Iyer;Viktor Prasanna - 通讯作者:
Viktor Prasanna
Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous Platform
在 CPU 多 FPGA 异构平台上加速 GNN 训练
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yi-Chien Lin;Bingyi Zhang;Viktor Prasanna - 通讯作者:
Viktor Prasanna
Guest Editorial: Computing Frontiers
- DOI:
10.1007/s10766-013-0240-2 - 发表时间:
2013-01-31 - 期刊:
- 影响因子:0.900
- 作者:
Calin Cascaval;Pedro Trancoso;Viktor Prasanna - 通讯作者:
Viktor Prasanna
Viktor Prasanna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Viktor Prasanna', 18)}}的其他基金
IUCRC Phase I University of Southern California: Center for Intelligent Distributed Embedded Applications and Systems (IDEAS)
IUCRC 第一期南加州大学:智能分布式嵌入式应用和系统中心 (IDEAS)
- 批准号:
2231662 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
OAC Core: Scalable Graph ML on Distributed Heterogeneous Systems
OAC 核心:分布式异构系统上的可扩展图 ML
- 批准号:
2209563 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Accelerating Privacy Preserving Deep Learning for Real-time Secure Applications
SaTC:核心:小型:加速实时安全应用程序的隐私保护深度学习
- 批准号:
2104264 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research:PPoSS:Planning: Streamware - A Scalable Framework for Accelerating Streaming Data Science
合作研究:PPoSS:规划:Streamware - 加速流数据科学的可扩展框架
- 批准号:
2119816 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RAPID: ReCOVER: Accurate Predictions and Resource Allocation for COVID-19 Epidemic Response
RAPID:ReCOVER:COVID-19 流行病应对的准确预测和资源分配
- 批准号:
2027007 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CNS Core: Small: AccelRITE: Accelerating ReInforcemenT Learning based AI at the Edge Using FPGAs
CNS 核心:小型:AccelRITE:使用 FPGA 在边缘加速基于强化学习的 AI
- 批准号:
2009057 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
OAC Core: Small: Scalable Graph Analytics on Emerging Cloud Infrastructure
OAC 核心:小型:新兴云基础设施上的可扩展图形分析
- 批准号:
1911229 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
FoMR: DeepFetch: Compact Deep Learning based Prefetcher on Configurable Hardware
FoMR:DeepFetch:可配置硬件上基于紧凑深度学习的预取器
- 批准号:
1912680 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CNS: CSR: Small: Exploiting 3D Memory for Energy-Efficient Memory-Driven Computing
CNS:CSR:小型:利用 3D 内存实现节能内存驱动计算
- 批准号:
1643351 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
EAGER: Safer Connected Communities Through Integrated Data-driven Modeling, Learning, and Optimization
EAGER:通过集成的数据驱动建模、学习和优化打造更安全的互联社区
- 批准号:
1637372 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似海外基金
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
- 批准号:
24K15389 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AI-powered portable MRI abnormality detection (APPMAD)
人工智能驱动的便携式 MRI 异常检测 (APPMAD)
- 批准号:
MR/Z503812/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Research Grant
I-Corps: Translation Potential of Portable Tuned Mass Dampers to Reduce Vibration Serviceability Issues in Architectural Structures
I-Corps:便携式调谐质量阻尼器减少建筑结构振动适用性问题的转化潜力
- 批准号:
2407141 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
I-Corps: Portable Preterm Imaging System
I-Corps:便携式早产儿成像系统
- 批准号:
2402620 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Multiple Representations of Learning in Dynamics and Control: Exploring the Synergy of Low-Cost Portable Lab Equipment, Virtual Labs, and AI within Student Learning Activities
动力学和控制中学习的多重表示:探索低成本便携式实验室设备、虚拟实验室和人工智能在学生学习活动中的协同作用
- 批准号:
2336998 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Demonstrating the potential for portable detection of bird flu.
展示便携式检测禽流感的潜力。
- 批准号:
10090901 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Collaborative R&D
NSF Convergence Accelerator Track L: Portable Quantum-enhanced Sensing and Species Identification of Bioaerosols
NSF 融合加速器轨道 L:生物气溶胶的便携式量子增强传感和物种识别
- 批准号:
2344350 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Portable biosensor for rapid detection of viral contamination in food
用于快速检测食品中病毒污染的便携式生物传感器
- 批准号:
LP230100108 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Linkage Projects
Elements: Portable Machine Learning Models for Experimental Nuclear Physics
元素:实验核物理的便携式机器学习模型
- 批准号:
2311263 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
IRES Track I: Portable Point-of-Care Testing Device for Pathogen Detection
IRES Track I:用于病原体检测的便携式护理点测试设备
- 批准号:
2246339 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant