Manufacturing of High-Performance Lithium-Sulfur Batteries Using Microbial Nanomachines

利用微生物纳米机器制造高性能锂硫电池

基本信息

  • 批准号:
    1931737
  • 负责人:
  • 金额:
    $ 38.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

This project contributes new knowledge related to a microbial nanomachine-based manufacturing process for fabricating high-performance lithium-sulfur batteries. The novelty of this potentially-scalable and environmentally-friendly process is the use of microbial nanomachines that scavenge environmental pollutants to produce nanoscale materials. This award supports research to investigate sulfide oxidizing bacteria and cellulose bacteria to produce sulfur-containing nanoparticles and nanocellulose membranes, respectively, for use in high-performance lithium-sulfur batteries. The sulfur-containing nanoparticles are produced by sulfide oxidizing bacteria by harvesting environmental or industrial sulfide pollutants. The nanocellulose membrane is manufactured by cellulose bacteria through recycling certain agriculture or industry byproducts/wastes. The outcome of this research greatly impacts future high-performance battery technology, which benefits the U.S. economy and society. This convergent research involves biochemistry, material science and electrochemistry. Its multi-disciplinary approach trains the future advanced manufacturing workforce, fosters participation of women and underrepresented groups, and positively impacts STEM education. The challenge of soluble lithium polysulfides shuttling and other problems must be solved to develop high-performance lithium-sulfur batteries. This calls for manufacturing processes that produce a sulfur cathode nanostructure, which can physically trap and chemically bind these polysulfides, and a functionalized battery separator as a second barrier to close off the shuttling path. In nature, sulfide oxidizing bacteria can oxidize sulfide pollutants into elemental sulfur nanoparticles and store them in their bodies. There are also bacteria which produce high-quality nanocellulose membranes suitable as a battery separator by harvesting agriculture byproducts. This project studies two processes; a sulfide oxidizing bacteria cultured to produce sulfur-containing nanoparticles used in sulfur cathodes and a bacterial cellulose fermentation process along with its ionic modification as the battery separator. When combined, these components work cooperatively in solving the polysulfides shuttling and other problems faced by the lithium-sulfur battery technology. The research involves the study of polysulfides shuttling retardation mechanism, process development, nanostructure control and tailoring, material characterization, and battery performance testing. Together they advance the understanding of generating rationally-designed nanostructures via the scalable nanomanufacturing process using microbial nanomachines to manufacture high-performance lithium-sulfur batteries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目贡献了与基于微生物纳米机器的制造工艺相关的新知识,用于制造高性能锂硫电池。这种潜在的可扩展和环境友好的过程的新奇是使用微生物纳米机器来消除环境污染物以生产纳米级材料。该奖项支持研究硫化物氧化细菌和纤维素细菌,分别生产含硫纳米颗粒和纳米纤维素膜,用于高性能锂硫电池。含硫纳米颗粒由硫化物氧化细菌通过收获环境或工业硫化物污染物而产生。纳米纤维素膜由纤维素细菌通过回收某些农业或工业副产品/废物来制造。这项研究的成果将对未来的高性能电池技术产生重大影响,从而造福美国经济和社会。这种融合的研究涉及生物化学,材料科学和电化学。其多学科方法培训未来的先进制造业劳动力,促进妇女和代表性不足的群体的参与,并对STEM教育产生积极影响。要发展高性能锂硫电池,必须解决可溶性多硫化锂穿梭等问题。这就需要生产硫阴极纳米结构的制造工艺,它可以物理捕获和化学结合这些多硫化物,以及功能化的电池隔板作为第二个屏障来关闭穿梭路径。在自然界中,硫化物氧化细菌可以将硫化物污染物氧化成元素硫纳米颗粒并将其储存在体内。还有一些细菌通过收获农业副产品来生产高质量的纳米纤维素膜,适合作为电池隔膜。该项目研究了两个过程;培养硫化物氧化细菌以生产用于硫阴极的含硫纳米颗粒,以及细菌纤维素发酵过程沿着其离子改性作为电池隔膜。当组合时,这些组件协同工作,以解决锂硫电池技术所面临的多硫化物穿梭和其他问题。研究内容包括多硫化物穿梭阻滞机理的研究、工艺开发、纳米结构控制和剪裁、材料表征和电池性能测试。他们共同推进了通过可扩展的纳米制造过程使用微生物纳米机器制造高性能锂硫电池来产生合理设计的纳米结构的理解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhaoyang Fan其他文献

Dye-sensitized solar cells using TiO2 nanoparticles transformed from nanotube arrays
使用由纳米管阵列转化而来的 TiO2 纳米颗粒的染料敏化太阳能电池
  • DOI:
    10.1007/s10853-010-4281-2
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Y. Alivov;Zhaoyang Fan
  • 通讯作者:
    Zhaoyang Fan
146 Improved 3D SPACE carotid vessel wall imaging at 3.0 T
  • DOI:
    10.1186/1532-429x-10-s1-a47
  • 发表时间:
    2008-10-22
  • 期刊:
  • 影响因子:
  • 作者:
    Zhaoyang Fan;Zhuoli Zhang;Yiucho Chung;Peter Weale;Ioannis Koktzoglou;Sven Zuehlsdorff;Qi Yang;Kuncheng Li;John Sheehan;Timothy Carroll;Jin An;Xun Zhang;Qiang Zhang;Renate Jerecic;James Carr;Debiao Li
  • 通讯作者:
    Debiao Li
Quantitative multi-dimensional assessment of cardiovascular system (qMACS): Technical development
心血管系统定量多维评估(qMACS):技术发展
  • DOI:
    10.1016/j.jocmr.2024.101596
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Qingle Kong;Yang Chen;Junzhou Chen;Jiayu Xiao;Anthony G. Christodoulou;Debiao Li;John Wood;Zhaoyang Fan
  • 通讯作者:
    Zhaoyang Fan
The opportunities and challenges for SCR-DeNO<sub>x</sub> facing coalbed methane power generation
  • DOI:
    10.1016/j.jece.2024.114936
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jiangning Liu;Yin Che;Chen Wang;Weijiong Dai;Zhaoyang Fan;Xu Wu
  • 通讯作者:
    Xu Wu
PTFS04-02-23 Nanoencapsulated Resveratrol and Quercetin: Anti-Obesity Effects in Human Fecal Microbiota Transplant C57BL/6J Mice
  • DOI:
    10.1016/j.cdnut.2023.101645
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Fang Zhou;Zhaoyang Fan;Shu Wang
  • 通讯作者:
    Shu Wang

Zhaoyang Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhaoyang Fan', 18)}}的其他基金

Collaborative Research: Promoting Lithium Sulfides Redox Cycle via Atomically Dispersed Active Sites for Batteries
合作研究:通过电池的原子分散活性位点促进硫化锂氧化还原循环
  • 批准号:
    2129983
  • 财政年份:
    2021
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Continuing Grant
PFI-TT: Ultrafast Electrochemical Capacitors for Electronic and Energy Applications
PFI-TT:用于电子和能源应用的超快电化学电容器
  • 批准号:
    2122921
  • 财政年份:
    2021
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
Manufacturing of High-Performance Lithium-Sulfur Batteries Using Microbial Nanomachines
利用微生物纳米机器制造高性能锂硫电池
  • 批准号:
    2103582
  • 财政年份:
    2020
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
I-Corps: Supercapacitors for Energy Applications
I-Corps:能源应用超级电容器
  • 批准号:
    1756904
  • 财政年份:
    2017
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
High density capacitors: bridging the performance gap between conventional capacitors and electric double layer capacitors
高密度电容器:缩小传统电容器和双电层电容器之间的性能差距
  • 批准号:
    1611060
  • 财政年份:
    2016
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
Organometal Halide Perovskites: Sequential Vapor Deposition And Device Study Toward Highly Efficient Thin-Film Solar Cells
有机金属卤化物钙钛矿:高效薄膜太阳能电池的连续气相沉积和器件研究
  • 批准号:
    1438681
  • 财政年份:
    2014
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
Electrically Controlled Metal-Insulator Transition and Its Terahertz Applications
电控金属-绝缘体转变及其太赫兹应用
  • 批准号:
    1128644
  • 财政年份:
    2011
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
SBIR Phase II: Microdisplays Based on III-Nitride Wide Band Gap Semiconductors
SBIR 第二阶段:基于 III 族氮化物宽带隙半导体的微型显示器
  • 批准号:
    0450314
  • 财政年份:
    2005
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
SBIR Phase I: Microdisplays Based on III-Nitride Wide Band Gap Semiconductors
SBIR 第一阶段:基于 III 族氮化物宽带隙半导体的微型显示器
  • 批准号:
    0339022
  • 财政年份:
    2004
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant

相似海外基金

Surface Engineered and Highly Redox Active Polar Oxide Host Materials Immobilizing Lithium Polysulfides for Long-Life and High-Performance Li-S Batteries
表面工程和高氧化还原活性极性氧化物主体材料固定多硫化锂,用于长寿命和高性能锂硫电池
  • 批准号:
    2427263
  • 财政年份:
    2024
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
Demonstrating large-scale and high-performance lithium-sulfur batteries
展示大规模高性能锂硫电池
  • 批准号:
    EP/Y036735/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Research Grant
Creation of high-performance all solid state lithium ion battery by using innovative dry method.
采用创新干法制造高性能全固态锂离子电池。
  • 批准号:
    23H01748
  • 财政年份:
    2023
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Lithium-Ion Battery Degradation and Performance Prediction in 2nd-Life Applications project
第二次生命应用项目中的锂离子电池退化和性能预测
  • 批准号:
    2844646
  • 财政年份:
    2023
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Studentship
PFI-TT: Filled carbon nanotubes for the development of high-performance lithium-ion batteries
PFI-TT:用于开发高性能锂离子电池的填充碳纳米管
  • 批准号:
    2213923
  • 财政年份:
    2023
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
Accelerated Lithium-Ion Cell Life Tests for Rapid Performance Screening and Electrolyte Analysis
用于快速性能筛选和电解质分析的加速锂离子电池寿命测试
  • 批准号:
    569783-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Multifunctional Zwitterionic Solid Polymer Electrolytes for High-Performance Lithium-Ion Batteries
用于高性能锂离子电池的多功能两性离子固体聚合物电解质
  • 批准号:
    2224253
  • 财政年份:
    2022
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Standard Grant
SBIR Phase II: Development of Safe, Energy Dense, High Performance Lithium Ion Batteries
SBIR 第二阶段:开发安全、高能量密度、高性能锂离子电池
  • 批准号:
    2112154
  • 财政年份:
    2022
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Cooperative Agreement
Engineering Nanostructured Solid-State Electrolyte for High Performance All-Solid-State Lithium Batteries
用于高性能全固态锂电池的工程纳米结构固态电解质
  • 批准号:
    569037-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Constructing a cloud-based battery management system to optimize lithium-ion battery system performance and lifespan using machine learning and data mining techniques
利用机器学习和数据挖掘技术构建基于云的电池管理系统,以优化锂离子电池系统性能和寿命
  • 批准号:
    566616-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 38.1万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了