CPS:Medium:Collaborative Research: High-Fidelity High-Resolution and Secure Monitoring and Control of Future Grids: a synergy of AI, data science, and hardware security

CPS:中:协作研究:未来电网的高保真高分辨率和安全监控:人工智能、数据科学和硬件安全的协同作用

基本信息

  • 批准号:
    1932196
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

The increasing presence of renewable generations and distributed energy resources in transmission systems heightens the need for fast-timescale situational awareness for system reliability, resiliency, and both the operational and cyber security. Despite the invention of phasor measurement units that promised close-to-real-time monitoring of the system states, the limited deployment of phasor measurement units had hampered the ability of the system operator to uncover trends of instability, react to system contingencies, and detect malicious attacks on the power grid. This research develops new hardware and software solutions for high-fidelity, high-resolution, and secure monitoring and control of the future grid. By harnessing and exploiting the increasingly abundant and diverse data sources and through novel applications of machine learning and artificial intelligence, this research advances the state-of-the-art monitoring of cyber-physical systems in three fronts. First, this research develops machine learning approaches to high-resolution state estimation for power systems that are unobservable by existing phasor measurement units. Second, this research offers new solutions to detecting and mitigating data anomaly caused by malfunctions of sensors, communications systems, and cyber attacks by adversarial agents. Third, this research develops a new hardware architecture and prototypes for future digital substations that provide hardware-based security. This research has broader impacts on enhancing national security in critical infrastructures, promoting economic competitiveness through accelerated adoption of phasor measurement technology, and broadening participation of women and under-represented minority groups in science, technology, engineering, and mathematics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着可再生能源和分布式能源在输电系统中的日益增多,对系统可靠性、弹性以及运营和网络安全的快速态势感知的需求也越来越高。 尽管相量测量单元的发明承诺接近实时监测系统状态,但相量测量单元的有限部署阻碍了系统运营商发现不稳定趋势,对系统突发事件做出反应以及检测电网恶意攻击的能力。 这项研究开发了新的硬件和软件解决方案,用于未来电网的高保真,高分辨率和安全的监测和控制。 通过利用和利用日益丰富和多样化的数据源,并通过机器学习和人工智能的新应用,这项研究在三个方面推进了对网络物理系统的最先进监测。 首先,本研究开发了机器学习方法,用于现有相量测量单元无法观测的电力系统的高分辨率状态估计。 其次,这项研究提供了新的解决方案,以检测和缓解由传感器,通信系统故障和敌对代理的网络攻击引起的数据异常。 第三,本研究为未来的数字变电站开发了一种新的硬件架构和原型,提供基于硬件的安全性。 这项研究对加强关键基础设施的国家安全,通过加速采用相量测量技术促进经济竞争力,以及扩大妇女和代表性不足的少数群体在科学,技术,工程,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响进行评估来支持审查标准。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning and generalization of one-hidden-layer neural networks, going beyond standard Gaussian data
单隐层神经网络的学习和泛化,超越标准高斯数据
Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks
  • DOI:
    10.48550/arxiv.2306.04073
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohammed Nowaz Rabbani Chowdhury;Shuai Zhang;M. Wang;Sijia Liu;Pin-Yu Chen
  • 通讯作者:
    Mohammed Nowaz Rabbani Chowdhury;Shuai Zhang;M. Wang;Sijia Liu;Pin-Yu Chen
Bayesian High-Rank Hankel Matrix Completion for Nonlinear Synchrophasor Data Recovery
用于非线性同步相量数据恢复的贝叶斯高阶 Hankel 矩阵补全
  • DOI:
    10.1109/tpwrs.2023.3254909
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Yi, Ming;Wang, Meng;Hong, Tianqi;Zhao, Dongbo
  • 通讯作者:
    Zhao, Dongbo
Real-Time Energy Disaggregation at Substations With Behind-the-Meter Solar Generation
  • DOI:
    10.1109/tpwrs.2020.3035639
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Wenting Li;Ming Yi;Meng Wang;Yishen Wang;Di Shi;Zhiwei Wang
  • 通讯作者:
    Wenting Li;Ming Yi;Meng Wang;Yishen Wang;Di Shi;Zhiwei Wang
Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural Networks
  • DOI:
    10.48550/arxiv.2302.02922
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuai Zhang;M. Wang;Pin-Yu Chen;Sijia Liu;Songtao Lu;Miaoyuan Liu
  • 通讯作者:
    Shuai Zhang;M. Wang;Pin-Yu Chen;Sijia Liu;Songtao Lu;Miaoyuan Liu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Meng Wang其他文献

SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning
SF-DQN:使用深度强化学习的后继特征进行可证明的知识转移
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuai Zhang;Heshan Devaka Fernando;Miao Liu;K. Murugesan;Songtao Lu;Pin;Tianyi Chen;Meng Wang
  • 通讯作者:
    Meng Wang
Joint Computation Offloading, Channel Access and Scheduling Optimization in UAV Swarms: A Game-Theoretic Learning Approach
无人机群中的联合计算卸载、信道访问和调度优化:一种博弈论学习方法
  • DOI:
    10.1109/ojcs.2021.3100870
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Runfeng Chen;Li Cui;Meng Wang;Yuli Zhang;Kailing Yao;Yang Yang;Changhua Yao
  • 通讯作者:
    Changhua Yao
Electrochemical development and enhancement of latent fingerprints on stainless steel via electrochromic effect of electrodeposited Co3O4 films
通过电沉积 Co3O4 薄膜的电致变色效应电化学发展和增强不锈钢上的潜在指纹
  • DOI:
    10.1016/j.electacta.2021.137771
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Chuanjun Yuan;Ming Li;Meng Wang;Yuanyuan Dan;Tianchun Lin;Haijun Cao;Mengjie Zhang;Peng Zhao;Hui Yang
  • 通讯作者:
    Hui Yang
Model analysis on electrodialysis for inorganic acid recovery and its experimental validation
电渗析回收无机酸的模型分析及实验验证
  • DOI:
    10.1016/j.seppur.2017.08.067
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Yuxiang Jia;Fengjiao Li;Xiang Chen;Meng Wang
  • 通讯作者:
    Meng Wang
Optimal mobile App advertising keyword auction model with variable costs
可变成本最优移动App广告关键词拍卖模型

Meng Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Meng Wang', 18)}}的其他基金

Collaborative Research: NSF-BSF: Mainstream deammonification by ion exchange and bioregeneration via partial nitritation/anammox
合作研究:NSF-BSF:通过离子交换进行主流脱氨,并通过部分亚硝化/厌氧氨氧化进行生物再生
  • 批准号:
    2000761
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
EXHIBIT : Expressive High-Level Languages for Bidirectional Transformations
附件:用于双向转换的富有表现力的高级语言
  • 批准号:
    EP/T008911/1
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Exploiting Low-dimensional Structures in Data Management of High-dimensional Synchrophasor Measurements for Power System Monitoring
利用低维结构进行电力系统监测的高维同步相量测量数据管理
  • 批准号:
    1508875
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
  • 批准号:
    2333980
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2401007
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
  • 批准号:
    2235231
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223987
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
  • 批准号:
    2305882
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
  • 批准号:
    2241796
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了