Benchmark Data Set for Damage Mechanics Challenge on Brittle-Ductile Materials
脆性材料损伤力学挑战的基准数据集
基本信息
- 批准号:1932312
- 负责人:
- 金额:$ 8.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The reliability and sustainability of civil infrastructure, the human body and the Earth's subsurface all depend on our ability to monitor existing and evolving damage. Damage is a key mode of failure of civil infrastructure, components of the human body and subsurface storage, but it is of the highest importance for the success of enhanced energy production from geothermal and traditional subsurface reservoirs. As artificial intelligence methods advance in the detection of anomalous signals in data from sensors, methods are needed to link these readings to the underlying physics/mechanics of failure to determine if failure is imminent. This requires robust computational methods that capture the physics of failure and identify the measurable signatures of failure. While there are many computational approaches for simulating damage, few have been ground-truth tested with either known experimental data or with blind data sets. This research will generate a benchmark laboratory data set to initiate a damage mechanics challenge to compare computational approaches on damage evolution in brittle-ductile material. The generation of this dataset will be of great benefit to the advancement of material models, to the comparison of predictions among different numerical approaches, and most importantly create a high-quality database of experimental data that can be used in the future by the engineering community. The broader impact is critical testing of an array of computational methods used to predict damage and failure. Understanding the failure of materials is particularly relevant today with the current interest in the nation?s aging infrastructure and in enhanced geothermal systems which require a network of fractures to optimize production. Our outreach objective is to obtain a benchmark dataset for a computational challenge and for training graduate and undergraduate students in methods for verification of computational models; to provide a forum for open discussions of numerical approaches for failure, and to provide a vetted computational community of scientists and engineers to address damage/failure issues and to work with industry.A benchmark laboratory data set will be generated for a damage mechanics challenge to compare computational approaches on damage evolution in brittle-ductile materials. The experimental design was developed as a community effort at a Damage Mechanics Workshop held at Purdue University in February 2019, which included lead computational scientists and engineers in the field of damage mechanics. The benchmark laboratory datasets will include spatial and temporal measurements from traditional digital load-displacement sensors, 3D digital image correlation to map surface deformations, 3D X-ray microscopy to ground-truth the crack-failure geometry, and laser profilometry to capture surface roughness. The samples will be fabricated through additive manufacturing methods (e.g. 3D printing) to produce repeatable samples designed to fail in controlled ways. These methods were selected to ensure that participant-defined repeatable and unbiased metrics were available to quantitatively assess and measure the quality of the theoretical and data-driven models, given the significant influence of inherent uncertainty and variability on the onset and mode of failure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
民用基础设施、人体和地球地下的可靠性和可持续性都取决于我们监测现有和不断演变的损害的能力。 损坏是民用基础设施、人体组成部分和地下储存失败的一个主要模式,但它对于成功地提高地热和传统地下储层的能源生产至关重要。 随着人工智能方法在检测传感器数据中的异常信号方面的进步,需要将这些读数与故障的基本物理/力学联系起来的方法,以确定故障是否即将发生。这需要强大的计算方法,捕捉故障的物理和识别故障的可测量的签名。虽然有许多用于模拟损伤的计算方法,但很少用已知的实验数据或盲数据集进行地面实况测试。这项研究将产生一个基准的实验室数据集,启动一个损伤力学的挑战,比较计算方法在脆韧性材料的损伤演化。该数据集的生成将极大地有利于材料模型的进步,不同数值方法之间的预测比较,最重要的是创建一个高质量的实验数据数据库,可供工程界在未来使用。 更广泛的影响是对用于预测损坏和故障的一系列计算方法的关键测试。理解材料的失效与当今国家的当前利益特别相关?在日益老化的基础设施和需要裂缝网络来优化生产的增强型地热系统中,我们的推广目标是获得一个基准数据集的计算挑战和培训研究生和本科生的方法,用于验证计算模型;提供一个论坛,公开讨论失败的数字方法,并提供一个由科学家和工程师组成的经过审查的计算社区,以解决损害/将为损伤力学挑战生成基准实验室数据集,以比较脆韧性材料损伤演化的计算方法。实验设计是作为2019年2月在普渡大学举行的损伤力学研讨会上的社区努力而开发的,其中包括损伤力学领域的首席计算科学家和工程师。基准实验室数据集将包括来自传统数字载荷-位移传感器的空间和时间测量值、用于映射表面变形的3D数字图像相关性、用于裂纹失效几何形状的3D X射线显微镜以及用于捕获表面粗糙度的激光轮廓测量。这些样品将通过增材制造方法(例如3D打印)制造,以生产可重复的样品,这些样品旨在以受控的方式失效。选择这些方法是为了确保参与者定义的可重复和无偏见的指标可用于定量评估和衡量理论和数据驱动模型的质量,考虑到固有的不确定性和可变性对故障的发生和模式的重大影响,该奖项反映了NSF的法定使命,并通过利用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Pyrak-Nolte其他文献
Laura Pyrak-Nolte的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura Pyrak-Nolte', 18)}}的其他基金
Dynamic Redistribution of Fluids in Porous Media
多孔介质中流体的动态重新分布
- 批准号:
1314663 - 财政年份:2013
- 资助金额:
$ 8.99万 - 项目类别:
Continuing Grant
Geometry & Dynamics of Interfaces in Porous Media
几何学
- 批准号:
0911284 - 财政年份:2009
- 资助金额:
$ 8.99万 - 项目类别:
Standard Grant
Experimental Investigation of Interfacial Geometry associated with Multiphase Flow within Two- and Three- Dimensional Porous Medium
二维和三维多孔介质内与多相流相关的界面几何形状的实验研究
- 批准号:
0509759 - 财政年份:2005
- 资助金额:
$ 8.99万 - 项目类别:
Continuing Grant
Acquisition of a Servo-Controlled Bi-axial Test System for Geomechanics and Structural Engineering Applications
采购用于地质力学和结构工程应用的伺服控制双轴测试系统
- 批准号:
9521686 - 财政年份:1995
- 资助金额:
$ 8.99万 - 项目类别:
Standard Grant
Investigation of Seismic Wave Attenuation During Frictional Sliding
摩擦滑动过程中地震波衰减的研究
- 批准号:
9315767 - 财政年份:1994
- 资助金额:
$ 8.99万 - 项目类别:
Standard Grant
Elastic Interface Waves Along a Fracture: Detection
沿裂缝的弹性界面波:检测
- 批准号:
9021644 - 财政年份:1990
- 资助金额:
$ 8.99万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 8.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Using AI and big data to identify a set of biologically validated drug targets for hard-to-treat cancers
使用人工智能和大数据来确定一组经过生物学验证的药物靶点,用于治疗难以治疗的癌症
- 批准号:
2886797 - 财政年份:2023
- 资助金额:
$ 8.99万 - 项目类别:
Studentship
Chinese language versions of the National Alzheimer's Coordinating Center's Uniform Data Set version 4: a linguistic and cultural adaptation study
国家阿尔茨海默病协调中心统一数据集第4版中文版:语言和文化适应研究
- 批准号:
10740587 - 财政年份:2023
- 资助金额:
$ 8.99万 - 项目类别:
Study of structure formation and galaxy evolution based on big data set from Subaru Telescope
基于斯巴鲁望远镜大数据集的结构形成和星系演化研究
- 批准号:
23H05438 - 财政年份:2023
- 资助金额:
$ 8.99万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Detailed invesitigation of the light fading process of dyes used for traditional Japanese paintings and application of the data set to online risk assessment tools.
对日本传统绘画所用染料的光褪色过程进行详细研究,并将数据集应用于在线风险评估工具。
- 批准号:
23KK0012 - 财政年份:2023
- 资助金额:
$ 8.99万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Development of an open-source reference data set, image repository and interactive training tool for bone damage assessment in inflammatory arthritis
开发用于炎症性关节炎骨损伤评估的开源参考数据集、图像存储库和交互式培训工具
- 批准号:
460681 - 财政年份:2022
- 资助金额:
$ 8.99万 - 项目类别:
Miscellaneous Programs
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
22H00796 - 财政年份:2022
- 资助金额:
$ 8.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insights into the complexities of a seismogenic subduction zone: Analysis of a high-quality aftershock data set from the 2017 Tehuantepec (M8.2) offshore Mexico earthquake
洞察孕震俯冲带的复杂性:2017 年墨西哥特万特佩克 (M8.2) 近海地震的高质量余震数据集分析
- 批准号:
2054442 - 财政年份:2021
- 资助金额:
$ 8.99万 - 项目类别:
Continuing Grant
Analysis of the J-SPEED/Emergency Medical Team Minimum Data Set of Japan
日本J-SPEED/紧急医疗队最低数据集分析
- 批准号:
21K09020 - 财政年份:2021
- 资助金额:
$ 8.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Digitization and Analysis of the Bills of Mortality Data Set
死亡账单数据集的数字化和分析
- 批准号:
2120311 - 财政年份:2021
- 资助金额:
$ 8.99万 - 项目类别:
Standard Grant