CAREER: Geometric and Topological Approaches to Group Actions in Low Dimensions

职业:低维群行动的几何和拓扑方法

基本信息

  • 批准号:
    1933598
  • 负责人:
  • 金额:
    $ 47.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This project concerns actions of infinite groups on manifolds, an area bridging and uniting many areas of mathematics (topology, geometric group theory, foliation theory, and topological dynamics). The Principal Investigator (PI) will study basic mathematical objects by studying their symmetries, and by studying how the objects change under transformations: this is the study of group actions. The project will describe and distinguish rigid behavior, where small perturbations to a system of transformations do not qualitatively change the long-term outcome, versus unstable or chaotic behavior, which is highly sensitive to perturbation. Variations on this problem arise all around us, as we seek to understand the long-term behavior of mathematical models of real world objects ranging from weather patterns, to ocean currents, to the configuration space of a mechanical system. When the objects of interest are highly complex or not easily parametrized, these problems are difficult to approach, and the PI's program centers on several new techniques to render rigidity problems tractable. The project also involves the introduction of active-learning courses for undergraduate mathematics students, including a program to train graduate students in teaching methods, and a major workshop on effectively communicating mathematics across research areas with the aim of increasing communication between mathematicians in disparate fields. A major guiding principle in the PI's work is that rigidity of group actions, in the sense of topological dynamics, is often the result of an underlying geometric structure. One example of this phenomenon is the PI's recent results on foliated circle bundles over surfaces, where it is shown that every rigid such bundle is geometric. This project builds on this success of this program, extending this theme to new contexts and applications. The PI will continue work on flat bundles and rigid monodromy group actions, using techniques from foliation theory and coarse geometry in negative curvature to study boundary actions. Another strand of this project involves an investigation of rigidity of infinite discrete groups acting on the circle through the topology of spaces of circular orders, following work of A. Navas. Finally, the PI will adapt techniques from geometric group theory to the new context of non-locally compact groups, applying this this to study the dynamics of group actions on surfaces, and refining the notion of distortion and growth in transformation groups introduced by Gromov.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目关注流形上无限群的作用,这是一个连接和统一许多数学领域(拓扑学,几何群论,叶理理论和拓扑动力学)的领域。 主要研究者(PI)将通过研究它们的对称性来研究基本的数学对象,并通过研究对象在变换下如何变化:这是对群作用的研究。 该项目将描述和区分刚性行为,其中对转换系统的小扰动不会定性地改变长期结果,而不稳定或混沌行为对扰动高度敏感。 当我们试图理解真实的世界物体的数学模型的长期行为时,从天气模式到洋流,再到机械系统的配置空间,这个问题的变化就出现在我们周围。 当感兴趣的对象是高度复杂的或不容易参数化,这些问题是很难接近,和PI的程序集中在几个新的技术,使刚性问题易于处理。 该项目还涉及为本科数学学生引入主动学习课程,包括一个培训研究生教学方法的计划,以及一个关于跨研究领域有效交流数学的主要研讨会,目的是增加不同领域数学家之间的交流。 PI工作中的一个主要指导原则是,在拓扑动力学的意义上,群体作用的刚性通常是潜在几何结构的结果。这种现象的一个例子是PI最近的结果在表面上的叶状圆丛,它表明,每一个刚性这样的丛是几何的。该项目建立在该计划的成功基础上,将这一主题扩展到新的背景和应用。PI将继续研究扁平束和刚性单值群作用,使用叶理理论和负曲率下的粗糙几何来研究边界作用。 另一股这个项目涉及刚性的调查无限离散群体作用于圆通过拓扑空间的循环秩序,以下工作的A。纳瓦斯 最后,PI将调整技术从几何群论到非局部紧群的新背景下,应用这一点来研究表面上的群作用的动力学,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structure theorems for actions of homeomorphism groups
同胚群作用的结构定理
  • DOI:
    10.1215/00127094-2022-0019
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Chen, Lei;Mann, Kathryn
  • 通讯作者:
    Mann, Kathryn
Large-scale geometry of big mapping class groups
大映射类组的大规模几何
  • DOI:
    10.2140/gt.2023.27.2237
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Mann, Kathryn;Rafi, Kasra
  • 通讯作者:
    Rafi, Kasra
Automatic Continuity for Homeomorphism Groups and Big Mapping Class Groups
同态群和大映射类群的自动连续性
  • DOI:
    10.1307/mmj/20216095
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Mann, Kathryn
  • 通讯作者:
    Mann, Kathryn
Stability for hyperbolic groups acting on boundary spheres
作用于边界球上的双曲群的稳定性
  • DOI:
    10.1017/fms.2023.78
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mann, Kathryn;Manning, Jason Fox
  • 通讯作者:
    Manning, Jason Fox
There are no exotic actions of diffeomorphism groups on 1-manifolds
1-流形上不存在微分同胚群的奇异作用
  • DOI:
    10.4171/ggd/658
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen, Lei;Mann, Kathryn
  • 通讯作者:
    Mann, Kathryn
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathryn Mann其他文献

C0 STABILITY OF BOUNDARY ACTIONS AND INEQUIVALENT
C0 边界作用和不等价的稳定性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kathryn Mann
  • 通讯作者:
    Kathryn Mann
Large-scale geometry of homeomorphism groups
同胚群的大尺度几何
Homomorphisms between diffeomorphism groups
微分同态群之间的同态
Left-orderable groups that don’t act on the line
  • DOI:
    10.1007/s00209-015-1455-2
  • 发表时间:
    2015-03-07
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Kathryn Mann
  • 通讯作者:
    Kathryn Mann
Rigidity and flexibility of group actions on the circle
圈子上群体行动的刚性和灵活性
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kathryn Mann
  • 通讯作者:
    Kathryn Mann

Kathryn Mann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathryn Mann', 18)}}的其他基金

Conference: Cornell Topology
会议:康奈尔拓扑
  • 批准号:
    2247084
  • 财政年份:
    2023
  • 资助金额:
    $ 47.65万
  • 项目类别:
    Standard Grant
CAREER: Geometric and Topological Approaches to Group Actions in Low Dimensions
职业:低维群行动的几何和拓扑方法
  • 批准号:
    1844516
  • 财政年份:
    2019
  • 资助金额:
    $ 47.65万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1606254
  • 财政年份:
    2016
  • 资助金额:
    $ 47.65万
  • 项目类别:
    Fellowship Award

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Geometric and topological mechanics of flexible structures
职业:柔性结构的几何和拓扑力学
  • 批准号:
    2338492
  • 财政年份:
    2024
  • 资助金额:
    $ 47.65万
  • 项目类别:
    Continuing Grant
Studies on topological and geometric structure analysis and visualization of spatio-temporal data
时空数据拓扑几何结构分析与可视化研究
  • 批准号:
    23K11020
  • 财政年份:
    2023
  • 资助金额:
    $ 47.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-gap topological physics: from a new geometric perspective to materials
多间隙拓扑物理:从新的几何视角看材料
  • 批准号:
    EP/X025829/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.65万
  • 项目类别:
    Research Grant
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
  • 批准号:
    2304033
  • 财政年份:
    2023
  • 资助金额:
    $ 47.65万
  • 项目类别:
    Standard Grant
CAREER: Geometric Techniques for Topological Graph Algorithms
职业:拓扑图算法的几何技术
  • 批准号:
    2237288
  • 财政年份:
    2023
  • 资助金额:
    $ 47.65万
  • 项目类别:
    Continuing Grant
Algorithmic, topological and geometric aspects of infinite groups, monoids and inverse semigroups
无限群、幺半群和逆半群的算法、拓扑和几何方面
  • 批准号:
    EP/V032003/1
  • 财政年份:
    2022
  • 资助金额:
    $ 47.65万
  • 项目类别:
    Fellowship
Topological and Geometric Modeling and Computation of Structures and Functions in Single-Cell Omics Data
单细胞组学数据中结构和功能的拓扑和几何建模及计算
  • 批准号:
    2151934
  • 财政年份:
    2022
  • 资助金额:
    $ 47.65万
  • 项目类别:
    Continuing Grant
Collaboration Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
  • 批准号:
    2133851
  • 财政年份:
    2022
  • 资助金额:
    $ 47.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
  • 批准号:
    2133822
  • 财政年份:
    2022
  • 资助金额:
    $ 47.65万
  • 项目类别:
    Standard Grant
CDS&E: Extracting Physics from High-Fidelity Simulations of Atomization using Geometric and Topological Data Analysis
CDS
  • 批准号:
    2152737
  • 财政年份:
    2022
  • 资助金额:
    $ 47.65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了