CAREER: Geometric Techniques for Topological Graph Algorithms

职业:拓扑图算法的几何技术

基本信息

  • 批准号:
    2237288
  • 负责人:
  • 金额:
    $ 65.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

Classical techniques for designing graph algorithms do not assume structures of input graphs and therefore suffer from worst-case guarantees by artificial instances. Graphs arising in practical applications, including logistics and planning, very large-scale integration (VLSI) design, image processing, and robot navigation, often have nice topological structures: they can be drawn on the plane without (or with a few) edge crossings. Can these structures be exploited for algorithmic advantage? Research on this question has produced powerful algorithmic techniques. Nevertheless, algorithm designers have exploited these techniques to their limits over the past two decades. This project aims to develop a new class of techniques inspired by geometry counterparts that could overcome the limitations of the existing ones. The central idea is to study the metric space induced by shortest path distances of topological graphs and translate algorithmic ideas from discrete geometry to solve problems. In addition to potential impacts on practical applications, this project outlines specific plans to train students at both graduate and undergraduate levels; the practical aspects of this project would particularly be appealing to students from different backgrounds. The project also plans to disseminate state-of-the-art algorithm design techniques for topological graphs. This project will focus on two specific research thrusts. The first studies graph embeddings for designing approximation algorithms. This direction is inspired by the success of embedding techniques for general metrics. The goal is to develop new relaxations of the traditional metric embedding by taking topology into account, specifically focusing on designing approximation algorithms. The second thrust concerns different geometric structures of topological graphs. Developing new geometric structures has resulted in recent breakthroughs in topological graph algorithms. The project proposes an in-depth investigation of geometric structures, including various types of decompositions and dimensions inspired by those studied in geometry. Both thrusts complement each other well: understanding these structures gives insights into what it takes to construct the embeddings and vice versa. This project also includes a number of algorithmic problems that can be settled by geometric techniques for which the traditional techniques fail.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
设计图算法的经典技术不假设输入图的结构,因此受到人工实例的最坏情况保证。在实际应用中出现的图,包括物流和规划,超大规模集成电路(VLSI)设计,图像处理和机器人导航,通常具有很好的拓扑结构:它们可以在平面上绘制,没有(或有一些)边交叉。这些结构可以被利用来获得算法优势吗?对这个问题的研究已经产生了强大的算法技术。尽管如此,算法设计者在过去的二十年里已经将这些技术开发到了极限。该项目旨在开发一种新的技术,其灵感来自于几何对应物,可以克服现有技术的局限性。其中心思想是研究拓扑图的最短路距离所导出的度量空间,并将离散几何中的算法思想转化为求解问题的方法。除了对实际应用的潜在影响外,该项目还概述了培养研究生和本科生的具体计划;该项目的实践方面特别吸引来自不同背景的学生。该项目还计划传播最先进的拓扑图算法设计技术。该项目将侧重于两个具体的研究重点。第一个研究图嵌入设计近似算法。这个方向的灵感来自于通用指标嵌入技术的成功。我们的目标是通过考虑拓扑结构来开发传统度量嵌入的新松弛,特别是专注于设计近似算法。第二个重点是关于拓扑图的不同几何结构。开发新的几何结构导致了拓扑图算法的最新突破。该项目提出了几何结构的深入调查,包括各种类型的分解和尺寸的启发,在几何研究。这两个方向相互补充:理解这些结构可以让我们深入了解构建嵌入需要什么,反之亦然。该项目还包括一些可以通过几何技术解决的算法问题,而传统技术无法解决这些问题。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Planar and Minor-Free Metrics Embed into Metrics of Polylogarithmic Treewidth with Expected Multiplicative Distortion Arbitrarily Close to 1*
平面和无次要度量嵌入到多对数树宽度量中,预期乘性失真任意接近 1*
Covering Planar Metrics (and Beyond): O(1) Trees Suffice
覆盖平面度量(及以上):O(1) 棵树就足够了
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hung Le其他文献

Reliable Spanners: Locality-Sensitive Orderings Strike Back
可靠的扳手:区域敏感订单的反击
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arnold Filtser;Hung Le
  • 通讯作者:
    Hung Le
Validation of Prognostic Scores in Patients With Metastatic Urothelial Cancer Enrolling in Phase I Targeted Therapy or Next Generation Immunotherapy Trials.
参加 I 期靶向治疗或下一代免疫治疗试验的转移性尿路上皮癌患者的预后评分验证。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    O. Alhalabi;A. Hahn;P. Msaouel;F. Meric;N. Wilson;A. Naing;S. Piha;Janku Filip;S. Pant;T. Yap;D. Hong;S. Fu;D. Karp;Kimberly Beltran;E. Campbell;Hung Le;M. Campbell;A. Shah;N. Tannir;A. Siefker;Jianjun Gao;J. Roszik;V. Subbiah
  • 通讯作者:
    V. Subbiah
Theory of Computing
计算理论
  • DOI:
    10.4086/toc
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana
  • 通讯作者:
    Varun Suriyanarayana
Antibody Conjugated Nanocarriers for Targeted Antibiotic Delivery: Application in the Treatment of Bacterial Biofilm Infections
用于靶向抗生素递送的抗体缀合纳米载体:在细菌生物膜感染治疗中的应用
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hung Le;C. Arnoult;E. Dé;D. Schapman;L. Galas;D. Le Cerf;Carole Karakasyan
  • 通讯作者:
    Carole Karakasyan
Self-Assttentive Associative Memory
自我肯定联想记忆
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hung Le;T. Tran;S. Venkatesh
  • 通讯作者:
    S. Venkatesh

Hung Le的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hung Le', 18)}}的其他基金

NSF-BSF: Small: AF: Towards a Unified Theory of Spanners
NSF-BSF:小:AF:迈向扳手的统一理论
  • 批准号:
    2121952
  • 财政年份:
    2021
  • 资助金额:
    $ 65.55万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 65.55万
  • 项目类别:
    Standard Grant
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
  • 财政年份:
    2022
  • 资助金额:
    $ 65.55万
  • 项目类别:
    Discovery Grants Program - Individual
Towards The First Global Indoor Positioning System Using Geometric Modeling and Advanced Artificial Intelligence Techniques
迈向第一个使用几何建模和先进人工智能技术的全球室内定位系统
  • 批准号:
    22K12011
  • 财政年份:
    2022
  • 资助金额:
    $ 65.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
  • 财政年份:
    2021
  • 资助金额:
    $ 65.55万
  • 项目类别:
    Discovery Grants Program - Individual
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
  • 财政年份:
    2020
  • 资助金额:
    $ 65.55万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Modern nonconvex optimization for machine learning: foundations of geometric and scalable techniques
职业:机器学习的现代非凸优化:几何和可扩展技术的基础
  • 批准号:
    1846088
  • 财政年份:
    2019
  • 资助金额:
    $ 65.55万
  • 项目类别:
    Continuing Grant
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
  • 财政年份:
    2019
  • 资助金额:
    $ 65.55万
  • 项目类别:
    Discovery Grants Program - Individual
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
  • 财政年份:
    2018
  • 资助金额:
    $ 65.55万
  • 项目类别:
    Discovery Grants Program - Individual
Algebro-geometric techniques in kinematics of robots
机器人运动学中的代数几何技术
  • 批准号:
    1965756
  • 财政年份:
    2017
  • 资助金额:
    $ 65.55万
  • 项目类别:
    Studentship
CAREER: Geometric Techniques for Big Data Medical Imaging
职业:大数据医学成像的几何技术
  • 批准号:
    1651825
  • 财政年份:
    2017
  • 资助金额:
    $ 65.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了