CDS&E: Extracting Physics from High-Fidelity Simulations of Atomization using Geometric and Topological Data Analysis
CDS
基本信息
- 批准号:2152737
- 负责人:
- 金额:$ 37.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many applications simulate atomizing sprays that are found in engines, fire sprinklers, spray painting systems, and manufacturing processes. These simulations produce massive datasets that fully describe the spray. However, the design of these systems is hindered by the lack of knowledge and physics-based models of the atomization process. This work will combine geometric and topological data analysis with these rich simulations results to create new knowledge on how the liquid in a spray breaks up and ultimately lead to improved atomization models. The project includes the development of a teaching module that will bring geometric technics into undergraduate and graduate numerical methods courses which will expose future engineers to ideas from different disciplines. The goal of the project is to leverage advances in geometric and topological data analysis combined with high-fidelity simulation results to quantify how atomization occurs. The first objective will add extraction algorithms into an advance computational fluid dynamics code to produce a database of atomization events including the shape of and flow field around liquid structures. The second objective will extend geometric and topological descriptors to quantify the shapes of liquid structures and local flow fields. The descriptors will provide a way to index and search for quantitatively similar breakup events within the precomputed database from the high-fidelity simulations. The third objective will develop physicsbased, reducedorder models using new knowledge on the process of atomization. At a high level, the work couples geometric and topological analysis with highfidelity simulation results to provide a new perspective on a process. With this view, the work will allow for advances in a wide range of fields that involve the evolution of objects with changing shape.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多应用模拟发动机、消防喷淋头、喷漆系统和制造过程中的雾化喷雾。 这些模拟产生了完整描述喷雾的大量数据集。 然而,这些系统的设计因缺乏原子化过程的知识和基于物理的模型而受到阻碍。 这项工作将把几何和拓扑数据分析与这些丰富的模拟结果结合起来,创造关于喷雾中的液体如何分解的新知识,并最终改进雾化模型。 该项目包括开发一个教学模块,将几何技术引入本科生和研究生的数值方法课程,这将使未来的工程师接触到来自不同学科的想法。该项目的目标是利用几何和拓扑数据分析的进步以及高保真模拟结果来量化原子化的发生方式。 第一个目标是将提取算法添加到先进的计算流体动力学代码中,以生成雾化事件的数据库,包括液体结构的形状和周围的流场。第二个目标将扩展几何和拓扑描述符来量化液体结构和局部流场的形状。描述符将提供一种在来自高保真模拟的预先计算的数据库中索引和搜索定量相似的分手事件的方法。第三个目标将利用有关原子化过程的新知识开发基于物理的降阶模型。 在高层次上,该工作将几何和拓扑分析与高保真模拟结果结合起来,为过程提供了新的视角。从这一观点来看,这项工作将在涉及形状不断变化的物体演化的广泛领域取得进展。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Owkes其他文献
Three-dimensional velocity and concentration measurements and simulations of a scaled Jack Rabbit II mock urban array
- DOI:
10.1016/j.atmosenv.2020.117520 - 发表时间:
2020-07-15 - 期刊:
- 影响因子:
- 作者:
Mark Owkes;Michael Benson;Christopher Elkins;Nicholas Wilde;Bret Van Poppel - 通讯作者:
Bret Van Poppel
High fidelity simulations of contaminant dispersion in an urban environment with comparison to magnetic resonance imaging measurements
- DOI:
10.1007/s10652-025-10019-3 - 发表时间:
2025-01-11 - 期刊:
- 影响因子:2.100
- 作者:
Mark Owkes;Ty Homan;Michael Benson;Andrew Banko - 通讯作者:
Andrew Banko
Mark Owkes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Owkes', 18)}}的其他基金
CAREER: Advancing Knowledge of Atomization: Numerical Methods, Physics Extraction, and Reduced-Order Models
职业:推进雾化知识:数值方法、物理提取和降阶模型
- 批准号:
1749779 - 财政年份:2018
- 资助金额:
$ 37.53万 - 项目类别:
Standard Grant
UNS: multiphase-UQ: Uncertainty Quantification Framework for Multiphase Flow Simulations
UNS:multiphase-UQ:多相流模拟的不确定性量化框架
- 批准号:
1511325 - 财政年份:2015
- 资助金额:
$ 37.53万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4: NSF: Extracting Pan Genomic Information from Metagenomic Data: Distributed Algorithms and Scalable Software
RII Track-4:NSF:从宏基因组数据中提取泛基因组信息:分布式算法和可扩展软件
- 批准号:
2327456 - 财政年份:2024
- 资助金额:
$ 37.53万 - 项目类别:
Standard Grant
Extracting the detrimental effects of amyloid beta oligomer using contextual learning and controlling it with antagonist molecules
使用情境学习提取β淀粉样蛋白寡聚体的有害影响并用拮抗剂分子控制它
- 批准号:
23K06348 - 财政年份:2023
- 资助金额:
$ 37.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
- 批准号:
2300445 - 财政年份:2023
- 资助金额:
$ 37.53万 - 项目类别:
Standard Grant
Extracting Spectral Information from Noisy Quantum Data
从噪声量子数据中提取光谱信息
- 批准号:
2310182 - 财政年份:2023
- 资助金额:
$ 37.53万 - 项目类别:
Standard Grant
Extracting energy from air: mechanism of a bacterial hydrogenase
从空气中提取能量:细菌氢化酶的机制
- 批准号:
DP230103080 - 财政年份:2023
- 资助金额:
$ 37.53万 - 项目类别:
Discovery Projects
Verifying AI systems by extracting automata via learning
通过学习提取自动机来验证人工智能系统
- 批准号:
2791125 - 财政年份:2023
- 资助金额:
$ 37.53万 - 项目类别:
Studentship
Harvesting Actionable Results for Learning and Instruction: A Novel Mixed Methods Approach to Extracting and Validating Information from Diagnostic Assessment
收获可操作的学习和教学结果:一种从诊断评估中提取和验证信息的新型混合方法
- 批准号:
2300382 - 财政年份:2023
- 资助金额:
$ 37.53万 - 项目类别:
Standard Grant
RI: Small: Extracting Knowledge from Language Models for Decision Making
RI:小型:从语言模型中提取知识以进行决策
- 批准号:
2246811 - 财政年份:2023
- 资助金额:
$ 37.53万 - 项目类别:
Standard Grant
Extracting value from onion waste - Evaluation of pyrolysis to improve the sustainability of onion production and reduce costs on the journey to Net Zero
从洋葱废物中提取价值 - 评估热解以提高洋葱生产的可持续性并降低净零成本
- 批准号:
10050903 - 财政年份:2023
- 资助金额:
$ 37.53万 - 项目类别:
Collaborative R&D
Extracting subtle hints for new phenomena at the Large Hadron Collider
在大型强子对撞机中提取新现象的微妙暗示
- 批准号:
DP230101142 - 财政年份:2023
- 资助金额:
$ 37.53万 - 项目类别:
Discovery Projects














{{item.name}}会员




