Multi-Scale Multi-Material Printing of 3D Bead Arrays via Self-Focused Electrohydrodynamic Jets

通过自聚焦电流体动力喷射进行 3D 珠阵列的多尺度多材料打印

基本信息

  • 批准号:
    1934350
  • 负责人:
  • 金额:
    $ 44.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

The two most common ways for enhancing the functional properties of a surface are through micro-scale texturing and chemical coatings. Since current methods are limited in their ability to apply both of these methods simultaneously, a novel manufacturing technique is required so that surface modifications can be done in a single process. One potential candidate is a Self-Focused Electrohydrodynamic Micro-Texturing (SF-EMT) process. It uses electric force to manipulate an ink jet for printing structures in a droplet-by-droplet fashion to produce multilayer textures by utilizing the attraction between the previously deposited droplets and the printing jet. A variety of inks can be used to embed different chemistries on the printed structure. The potential of SF-EMT will be demonstrated by printing large-scale dew-collectors and micro-capacitor arrays. SF-EMT will open doors to high-performance surfaces, surface modifications and micro-structures at reduced manufacturing costs. Its simplicity and versatility will allow for rapid prototyping of surface textures and patterns with varying chemistries. Multidisciplinary research opportunities for graduate and undergraduate students will be made available through this project. Existing institutional mechanisms and programs will be leveraged to inform and attract underrepresented minorities to these advanced manufacturing research positions, and to further increase interest in STEM related careers.The realization of SF-EMT requires the understanding of a newly discovered self-focusing mechanism by which the jet is attracted to previously deposited features. A combination of experiments and numerical modeling to understand the dynamic, complex charge and mass transfer mechanisms at the different stages of the printing process will be investigated. Emphasis will be on understanding the deposition of beads on a surface and on top of other beads, the evaporation of the solvent throughout the process, and the dissipation of electrical charges. The realization of the process also requires the formulation of new polymeric inks. Tuning of ink composition for the specific applications will be expedited by leveraging the numerical models to significantly reduce the potential design space and the number of inks to be tested. Inks for dew-collection will be modified with nano-additives and surfactants to create nano-wrinkles and texture on the deposited beads resulting in multi-scale textures. For micro-capacitor arrays, conductive and dielectric inks will be formulated. A state-of-the-art testbed with machine vision for jet position control, in-situ metrology of bead size and solvent evaporation, controlled humidity, and precise computer control of the process parameters will be built for validation of the numerical models and for process assessment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
增强表面功能特性的两种最常见的方法是通过微尺度纹理和化学涂层。由于目前的方法在同时应用这两种方法的能力方面受到限制,因此需要一种新的制造技术,以便可以在单个过程中进行表面改性。一个潜在的候选者是自聚焦电流体动力学微织构(SF-EMT)工艺。它使用电力来操纵用于以逐滴方式打印结构的喷墨,以通过利用先前沉积的液滴与打印射流之间的吸引力来产生多层纹理。可以使用各种油墨将不同的化学物质嵌入到印刷结构上。SF-EMT的潜力将通过印刷大规模露水收集器和微电容器阵列来展示。SF-EMT将以更低的制造成本为高性能表面、表面改性和微结构打开大门。它的简单性和多功能性将允许快速原型的表面纹理和图案与不同的化学。研究生和本科生的多学科研究机会将通过这个项目提供。现有的体制机制和计划将被利用,以通知和吸引代表性不足的少数民族到这些先进的制造业研究职位,并进一步增加在STEM相关的careers.The SF-EMT的实现需要了解一个新发现的自聚焦机制,通过该机制,喷气机被吸引到以前沉积的功能。实验和数值模拟相结合,以了解在印刷过程的不同阶段的动态,复杂的电荷和质量转移机制将进行研究。重点将放在理解珠在表面上和其他珠顶部的沉积,整个过程中溶剂的蒸发,以及电荷的消散。该方法的实现还需要配制新的聚合物油墨。通过利用数值模型来显著减少潜在的设计空间和待测试的油墨数量,将加快针对特定应用的油墨成分的调整。用于露水收集的油墨将用纳米添加剂和表面活性剂进行改性,以在沉积的珠粒上产生纳米皱纹和纹理,从而产生多尺度纹理。对于微型电容器阵列,将配制导电和介电油墨。最先进的测试平台,具有机器视觉,用于喷射位置控制、珠粒尺寸和溶剂蒸发的原位计量、受控湿度,将建立对工艺参数的精确计算机控制,以验证数值模型和进行工艺评估。该奖项反映了NSF的法定使命,并且通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kornel Ehmann其他文献

Initial framework design of a digital twin mixed-reality-application on human-robot bi-directional collaboration for forming double curvature plate
  • DOI:
    10.1016/j.mfglet.2024.09.174
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kevin Benton Jr;Nicholas Dewberry;Chandra Jaiswal;Shuva Chowdhury;Issa AlHmoud;Derick Suarez;Kornel Ehmann;Jian Cao;Balakrishna Gokaraju
  • 通讯作者:
    Balakrishna Gokaraju
In-process part tracking and shape measurement using vision-based motion capture for automated English wheeling
  • DOI:
    10.1016/j.mfglet.2024.09.028
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yahui Zhang;Derick Suarez;Kornel Ehmann;Jian Cao;Ping Guo
  • 通讯作者:
    Ping Guo
Comparative Experimental Investigation of Micro-channel Fabrication in Ti Alloys by Laser Ablation and Laser-induced Plasma Micro-machining
  • DOI:
    10.1016/j.promfg.2019.06.186
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Suman Bhandari;Mahantesh Murnal;Jian Cao;Kornel Ehmann
  • 通讯作者:
    Kornel Ehmann
Simulation-guided variable laser power design for melt pool depth control in directed energy deposition
  • DOI:
    10.1016/j.addma.2022.102912
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shuheng Liao;Samantha Webster;Dean Huang;Raymonde Council;Kornel Ehmann;Jian Cao
  • 通讯作者:
    Jian Cao
Closed-loop control of μEDM surface quality with alternate on-machine metrology and in-process roughness prediction
通过交替机上计量和过程中粗糙度预测对 μEDM 表面质量进行闭环控制
  • DOI:
    10.1016/j.jmatprotec.2024.118357
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Long Ye;K. Saxena;Kornel Ehmann;J. Qian;D. Reynaerts
  • 通讯作者:
    D. Reynaerts

Kornel Ehmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kornel Ehmann', 18)}}的其他基金

Magnetically-Assisted Laser-Induced Plasma Micro-Machining for Flexible and Fast Texturing of Functional Surfaces
用于功能表面灵活快速纹理化的磁辅助激光诱导等离子体微加工
  • 批准号:
    1563244
  • 财政年份:
    2016
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Standard Grant
CPS: Synergy: An Integrated Simulation and Process Control Platform for Distributed Manufacturing Process Chains
CPS:Synergy:分布式制造流程链的集成仿真和流程控制平台
  • 批准号:
    1646592
  • 财政年份:
    2016
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental Study and Pragmatic Enhancement of Rock Cutting/Drilling for Oil Exploration through Embedded Thin Film Sensor Arrays in PCD Inserts
合作研究:通过 PCD 刀片中嵌入式薄膜传感器阵列进行石油勘探岩石切割/钻探的基础研究和实用增强
  • 批准号:
    1301127
  • 财政年份:
    2013
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Standard Grant
Process Modeling and Enhancements of Laser-Induced Plasma Micro-Machining (LIP-MM)
激光诱导等离子体微加工 (LIP-MM) 的工艺建模和增强
  • 批准号:
    1335014
  • 财政年份:
    2013
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Standard Grant
Curved Waterjet-Guided Laser Micro-Manufacturing
弯曲水射流引导激光微制造
  • 批准号:
    1234491
  • 财政年份:
    2012
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Standard Grant
Laser-Induced Plasma Micro-Machining (LIP-MM)
激光诱导等离子体微加工 (LIP-MM)
  • 批准号:
    0969776
  • 财政年份:
    2010
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Tissue Cutting Mechanics - Investigation of the Effective and Minimally Invasive Biopsy
合作研究:组织切割力学 - 有效和微创活检的研究
  • 批准号:
    0825722
  • 财政年份:
    2009
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Embedding of Thin Film Sensors in Advanced Ceramic Tools for Micro/Nano Scale Thermomechanical Measurements in and Near Tool-Workpiece Interface
合作研究:在先进陶瓷工具中嵌入薄膜传感器,用于工具-工件界面及其附近的微/纳米级热机械测量
  • 批准号:
    0824849
  • 财政年份:
    2008
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Standard Grant
3D Shaping with Tertiary Tool Motion
通过三次工具运动进行 3D 成形
  • 批准号:
    0600175
  • 财政年份:
    2006
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Microforming Processes - Fundamental Studies and Developments
GOALI/合作研究:微成型工艺 - 基础研究和发展
  • 批准号:
    0400310
  • 财政年份:
    2004
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Standard Grant

相似国自然基金

基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
  • 批准号:
    22108101
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
  • 批准号:
    31600794
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
针对Scale-Free网络的紧凑路由研究
  • 批准号:
    60673168
  • 批准年份:
    2006
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Project AHMAP - Analysis of Heterogeneous Multi-scale Material Properties for Metal Additive Manufacturing Structures
AHMAP 项目 - 金属增材制造结构的异质多尺度材料特性分析
  • 批准号:
    10022857
  • 财政年份:
    2022
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Collaborative R&D
Development of a multi scale ice material model for the simulation of brittle ice structure interaction
开发用于模拟脆性冰结构相互作用的多尺度冰材料模型
  • 批准号:
    441262697
  • 财政年份:
    2020
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Research Grants
Data assimilation-assisted multi-scale modelling for controlling material microstructures during thermomechanical processes
用于控制热机械过程中材料微观结构的数据同化辅助多尺度建模
  • 批准号:
    20K22393
  • 财政年份:
    2020
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Thermo-mechanical coupled gradient-enhanced reduced order multi-scale analysis for the next-generation material design
用于下一代材料设计的热机耦合梯度增强降阶多尺度分析
  • 批准号:
    20K14603
  • 财政年份:
    2020
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Development of Multi-Scale-Mechanical Model Considering Hydration and Deterioration Process of Cementitious Material
考虑胶凝材料水化和劣化过程的多尺度力学模型的开发
  • 批准号:
    18K13812
  • 财政年份:
    2018
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Multi-scale, high resolution operando analysis of material destruction processes using mechano-chemical interactive measurements
使用机械化学交互测量对材料破坏过程进行多尺度、高分辨率操作分析
  • 批准号:
    18K18960
  • 财政年份:
    2018
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of multi-scale and multi-physics integrative analysis system for multi-material structures by data assimilation
利用数据同化开发多材料结构多尺度、多物理综合分析系统
  • 批准号:
    18K03849
  • 财政年份:
    2018
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-Scale Modeling and Multi-Objective Design Framework for Location-Specific Material Behavior in Additively Manufactured Components
增材制造组件中特定位置材料行为的多尺度建模和多目标设计框架
  • 批准号:
    1825115
  • 财政年份:
    2018
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Standard Grant
Development of Generalized Material Model by Multi-Scale Numerical Material Testing Considering Microscopic Deformation Mechanism
考虑微观变形机制的多尺度数值材料测试广义材料模型的开发
  • 批准号:
    18K03881
  • 财政年份:
    2018
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: Reconstruction and Optimal Design of Multi-scale Material Systems through Deep Networks
EAGER:通过深度网络进行多尺度材料系统的重构和优化设计
  • 批准号:
    1651147
  • 财政年份:
    2016
  • 资助金额:
    $ 44.47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了