HDR TRIPODS: Building the Foundation for a Data-Intensive Studies Center-
HDR TRIPODS:为数据密集型研究中心奠定基础-
基本信息
- 批准号:1934553
- 负责人:
- 金额:$ 150万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Tufts University is launching the T-TRIPODS institute, that will focus an interdisciplinary effort across multiple departments and campuses to advance the understanding of foundations of data science. The project seeks to support the first three years of the operation of the institute, and will support a culture of interdisciplinary research and learning in data sciences across multiple departments, fostering collaboration between mathematicians, computer scientists, and electrical engineers, as well as with scientists and scholars in a wide range of application domains. The model is built around overlapping three-year focused research topics, with an offset timeline, so that each year, the oldest research topic sunsets while a new research topic is added. For each focused research topic, the project will convene interdisciplinary teams of mathematicians, computer scientists, statisticians and electrical engineers to address timely questions and solve important problems on the frontiers of data science. Complementing and completing the research effort are teaching and curriculum development efforts for data science at the undergraduate, graduate and professional levels. Furthermore, the structure of T-TRIPODS will foster specific and deep connections with application domain experts in several areas, leading to translational research. T-TRIPODS is strongly committed to Data Science for All, and will partner closely with the Tufts Center for STEM Diversity to broaden participation in undergraduate research opportunities in data science at Tufts.T-TRIPODS will address three research thrusts. Research Focus I (Graphs and Tensor Representations of Data) in the first year, which will be joined by Focus II (Collecting, Modeling, and Learning from Data with a Spatial or Temporal Dimension) in the second year, and Focus III (Data Guarantees: Analysis of Data with Assurances of Quality, Transparency, Fairness, Privacy, and Trust) in year three, which will bring the institute up to full capacity with three research foci running simultaneously. All research foci will include cross-disciplinary training of graduate students; workshops that bring together experts and early career scientists from math, computer science, and electrical engineering; training modules in application-specific concerns around ethical safeguards for data usage and analysis; and an Ideas Lab activity to connect researchers from the core research topics to domain experts in four identified broad application areas: 1) Biological and Biomedical data, 2) Education and Cognitive Science, 3) Smart Cities, Development, and Design and 4) Computational Arts and Humanities (including Language and Music). T-TRIPODS will be integrated within Tufts' new Data Intensive Science Center (DISC) and will synergize with and enhance existing Tufts University degree programs in Data Science.This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
塔夫茨大学正在启动T-TRIPODS研究所,该研究所将专注于跨多个部门和校园的跨学科努力,以促进对数据科学基础的理解。该项目旨在支持该研究所运营的前三年,并将支持跨学科研究和跨多个部门的数据科学学习文化,促进数学家,计算机科学家和电气工程师之间的合作,以及与科学家和学者在广泛的应用领域。该模型是围绕重叠的三年重点研究课题建立的,有一个偏移的时间轴,因此每年,最古老的研究课题日落,同时增加一个新的研究课题。对于每一个重点研究课题,该项目将召集数学家、计算机科学家、统计学家和电气工程师组成的跨学科团队,及时提出问题,解决数据科学前沿的重要问题。补充和完成研究工作的是本科生,研究生和专业水平的数据科学教学和课程开发工作。此外,T-TRIPODS的结构将促进与几个领域的应用领域专家的具体和深入的联系,从而进行转化研究。T-TRIPODS坚定地致力于为所有人提供数据科学,并将与塔夫茨STEM多样性中心密切合作,以扩大塔夫茨数据科学本科生研究机会的参与。T-TRIPODS将解决三个研究重点。研究重点一(图表和张量表示数据)在第一年,这将是加入焦点II(收集,建模和从空间或时间维度的数据中学习)在第二年,焦点III(数据保证:在第三年,以质量、透明度、公平性、隐私和信任为基础的数据分析,届时,研究所将可同时进行三个研究中心的工作。所有研究重点将包括研究生的跨学科培训;汇集数学,计算机科学和电气工程专家和早期职业科学家的研讨会;围绕数据使用和分析的道德保障的特定应用问题的培训模块;以及一个想法实验室活动,将核心研究主题的研究人员与四个确定的广泛应用领域的领域专家联系起来:1)生物和生物医学数据,2)教育和认知科学,3)智能城市,发展和设计,4)计算艺术和人文学科(包括语言和音乐)。T-TRIPODS将被整合到塔夫茨大学新的数据密集型科学中心(DISC)中,并将与塔夫茨大学现有的数据科学学位课程协同增效。该项目是美国国家科学基金会利用数据革命(HDR)的一部分。大创意活动。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Easy Variational Inference for Categorical Models via an Independent Binary Approximation
通过独立二元近似对分类模型进行简单的变分推理
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Michael T. Wojnowicz;Shuchin Aeron;Eric L. Miller;Michael C. Hughes
- 通讯作者:Michael C. Hughes
Randomized approaches to accelerate MCMC algorithms for Bayesian inverse problems
加速贝叶斯逆问题 MCMC 算法的随机方法
- DOI:10.1016/j.jcp.2021.110391
- 发表时间:2021
- 期刊:
- 影响因子:4.1
- 作者:Saibaba, Arvind K.;Prasad, Pranjal;de Sturler, Eric;Miller, Eric;Kilmer, Misha E.
- 通讯作者:Kilmer, Misha E.
GLIDE: combining local methods and diffusion state embeddings to predict missing interactions in biological networks
- DOI:10.1093/bioinformatics/btaa459
- 发表时间:2020-07-01
- 期刊:
- 影响因子:5.8
- 作者:Devkota, Kapil;Murphy, James M.;Cowen, Lenore J.
- 通讯作者:Cowen, Lenore J.
Cell shape, and not 2D migration, predicts extracellular matrix-driven 3D cell invasion in breast cancer
- DOI:10.1063/1.5143779
- 发表时间:2020-06-01
- 期刊:
- 影响因子:6
- 作者:Baskaran, Janani P.;Weldy, Anna;Oudin, Madeleine J.
- 通讯作者:Oudin, Madeleine J.
An inner–outer iterative method for edge preservation in image restoration and reconstruction
- DOI:10.1088/1361-6420/abb299
- 发表时间:2019-12
- 期刊:
- 影响因子:2.1
- 作者:S. Gazzola;M. Kilmer;J. Nagy;O. Semerci;E. Miller
- 通讯作者:S. Gazzola;M. Kilmer;J. Nagy;O. Semerci;E. Miller
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lenore Cowen其他文献
Quantifying Media Influence on Covid-19 Mask-Wearing Beliefs
量化媒体对 Covid-19 戴口罩信念的影响
- DOI:
10.48550/arxiv.2403.03684 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nicholas Rabb;Nitya Nadgir;J. P. D. Ruiter;Lenore Cowen - 通讯作者:
Lenore Cowen
A formal framework for evaluating heuristic programs
- DOI:
10.1023/a:1018950418415 - 发表时间:
1998-07-01 - 期刊:
- 影响因子:1.000
- 作者:
Lenore Cowen;Joan Feigenbaum;Sampath Kannan - 通讯作者:
Sampath Kannan
Network propagation: a universal amplifier of genetic associations
网络传播:基因关联的通用放大器
- DOI:
10.1038/nrg.2017.38 - 发表时间:
2017-06-12 - 期刊:
- 影响因子:52.000
- 作者:
Lenore Cowen;Trey Ideker;Benjamin J. Raphael;Roded Sharan - 通讯作者:
Roded Sharan
Lenore Cowen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lenore Cowen', 18)}}的其他基金
HDR: DIRSE-IL: Collaborative Research: Harnessing data advances in systems biology to design a biological 3D printer: the synthetic coral
HDR:DIRSE-IL:协作研究:利用系统生物学的数据进步来设计生物 3D 打印机:合成珊瑚
- 批准号:
1939263 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
Mining Multi-Layer Protein-Protein Association Networks: An Integrated Spectral Approach
挖掘多层蛋白质-蛋白质关联网络:综合光谱方法
- 批准号:
1812503 - 财政年份:2018
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
CCF-TFNSG: Uniting the Discrete Methods, Optimization and the CISE Community with Community Studying Matrix Operations, Tensors,Verifiable Computational Experiments and Scalability
CCF-TFNSG:将离散方法、优化和 CISE 社区与研究矩阵运算、张量、可验证计算实验和可扩展性的社区结合起来
- 批准号:
0843426 - 财政年份:2008
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Algorithms for Approximate Routing Problems
近似路由问题的算法
- 批准号:
0208629 - 财政年份:2002
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
Mathematical Sciences:Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9306081 - 财政年份:1993
- 资助金额:
$ 150万 - 项目类别:
Fellowship Award
相似海外基金
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
- 批准号:
2023109 - 财政年份:2020
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
- 批准号:
2023239 - 财政年份:2020
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
- 批准号:
2023495 - 财政年份:2020
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
- 批准号:
2023166 - 财政年份:2020
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
- 批准号:
1934813 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
HDR TRIPODS: Collaborative Research: Foundations of Greater Data Science
HDR TRIPODS:协作研究:大数据科学的基础
- 批准号:
1934962 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
HDR TRIPODS: UIC Foundations of Data Science Institute
HDR TRIPODS:UIC 数据科学研究所基础
- 批准号:
1934915 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
HDR TRIPODS: Data Science Principles of the Human-Machine Convergence
HDR TRIPODS:人机融合的数据科学原理
- 批准号:
1934924 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
- 批准号:
1934931 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
HDR TRIPODS: UT Austin Institute on the Foundations of Data Science
HDR TRIPODS:UT Austin 数据科学基础研究所
- 批准号:
1934932 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant