HDR TRIPODS: Data Science Principles of the Human-Machine Convergence
HDR TRIPODS:人机融合的数据科学原理
基本信息
- 批准号:1934924
- 负责人:
- 金额:$ 150万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will develop a new transdisciplinary Institute on Data Science for Intelligent Systems and People Interaction referred to as DATA-INSPIRE. This institute is premised on the belief that advances in data science principles are needed to impact the emerging paradigm of intelligent machines and their convergence with human society, and in particular to further improve the performance and better explain the operation of such machines that can accomplish diverse, real-world tasks and interact effectively with people. Fundamental notions of data science that can enhance development of intelligent machines can impact pressing problems facing our planet: healthcare, transportation, urban systems, etc. DATA-INSPIRE will bring together mathematicians, statisticians, and computer scientists for transdisciplinary research projects, new educational initiatives, workshops, and other efforts designed to catalyze a new foundational data science community focused on the development of intelligent, interactive machines. It will prepare students for transdisciplinary foundational work in data science, aid curriculum development, and involve government and industrial partners in collaborations and to aid in understanding of workforce issues resulting from use of intelligent machines.Intelligent machines, such as robots, are evolving from simple automata performing repetitive tasks in highly structured and enclosed workspaces to sophisticated, closed-loop systems capable of satisfying human specifications in dynamic environments that include people. To manage and master the operations of complex machines and their interactions with people, it is necessary to better understand and adapt the data that drive the algorithms that control them. DATA-INSPIRE will address the following challenges. (1) Failures in tasks such as autonomous driving or robotic surgery can have devastating consequences. Data-driven solutions are often opaque computational tools for which it is impossible to verify correctness or explain failures. Formal tools, integrated with data, are needed to remove ambiguity about what causes intelligent machines to perform in certain ways. (2) Data-driven solutions frequently depend critically on vast corpora of accurately labeled training instances, which can be difficult to collect for physical operations. Tools are needed to reduce machine learning methods' dependence on large amounts of task-specific supervision. (3) Most intelligent machines need to react to sensing data under critical deadlines, which, if not met, can jeopardize operations. Mathematical and statistical analyses of the dynamics of learning and control are needed to assist with more effective real-time decision making.This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将建立一个新的跨学科智能系统和人际互动数据科学研究所,简称Data - inspire。该研究所的前提是相信需要数据科学原理的进步来影响智能机器的新兴范式及其与人类社会的融合,特别是进一步提高性能并更好地解释这些机器的操作,这些机器可以完成各种现实世界的任务并与人有效互动。数据科学的基本概念可以促进智能机器的发展,可以影响我们这个星球面临的紧迫问题:医疗保健、交通、城市系统等。data - inspire将汇集数学家、统计学家和计算机科学家进行跨学科研究项目、新的教育计划、研讨会和其他努力,旨在催化一个新的基础数据科学社区,专注于智能、交互式机器的发展。它将帮助学生为数据科学的跨学科基础工作做好准备,帮助课程开发,让政府和工业合作伙伴参与合作,并帮助理解智能机器使用带来的劳动力问题。智能机器,如机器人,正在从在高度结构化和封闭的工作空间中执行重复任务的简单自动机演变为能够在包括人在内的动态环境中满足人类规范的复杂闭环系统。为了管理和掌握复杂机器的操作及其与人的互动,有必要更好地理解和调整驱动控制它们的算法的数据。DATA-INSPIRE将应对以下挑战。自动驾驶或机器人手术等任务中的失败可能会带来毁灭性的后果。数据驱动的解决方案通常是不透明的计算工具,无法验证其正确性或解释故障。需要与数据集成的正式工具来消除导致智能机器以特定方式执行的原因的模糊性。(2)数据驱动的解决方案经常严重依赖于大量准确标记的训练实例的语料库,这很难收集用于物理操作。需要工具来减少机器学习方法对大量特定任务监督的依赖。(3)大多数智能机器需要在关键期限内对感知数据做出反应,如果不能满足,可能会危及操作。需要对学习和控制的动态进行数学和统计分析,以协助更有效的实时决策。该项目是美国国家科学基金会“利用数据革命(HDR)大创意”活动的一部分。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
That and There: Judging the Intent of Pointing Actions with Robotic Arms
那个和那里:判断机械臂指向动作的意图
- DOI:10.1609/aaai.v34i06.6601
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Alikhani, M;Khalid, B;Shome, R;Mitash, C;Bekris, K E;Stone, M
- 通讯作者:Stone, M
Resilience algorithms in complex networks
复杂网络中的弹性算法
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Roberts, F.S.
- 通讯作者:Roberts, F.S.
Statistical Limits of Adaptive Linear Models: Low-Dimensional Estimation and Inference
- DOI:10.48550/arxiv.2310.00532
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Licong Lin;Mufang Ying;Suvrojit Ghosh;K. Khamaru;Cun-Hui Zhang
- 通讯作者:Licong Lin;Mufang Ying;Suvrojit Ghosh;K. Khamaru;Cun-Hui Zhang
Uniform Object Rearrangement: From Complete Monotone Primitives to Efficient Non-Monotone Informed Search
统一对象重排:从完整的单调基元到高效的非单调知情搜索
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Wang, Rui;Gao, Kai;Nakhimovich, Daniel;Yu, Jingjin;Bekris, Kostas E
- 通讯作者:Bekris, Kostas E
Individualized inference through fusion learning
通过融合学习进行个性化推理
- DOI:10.1002/wics.1498
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Cai, Chencheng;Chen, Rong;Xie, Min‐ge
- 通讯作者:Xie, Min‐ge
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fred Roberts其他文献
Regional and National Supply-Chain Impacts of Mississippi River Fertilizer Shipment Disruptions
密西西比河化肥运输中断对区域和国家供应链的影响
- DOI:
10.2139/ssrn.4674415 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zhenhua Chen;Adam Rose;Fred Roberts;Andrew Tucci - 通讯作者:
Andrew Tucci
An integrated framework for modeling pharmaceutical supply chains with disruptions and risk mitigation
- DOI:
10.1007/s10479-024-06381-y - 发表时间:
2024-12-07 - 期刊:
- 影响因子:4.500
- 作者:
Aman Goswami;Alok Baveja;Xin Ding;Benjamin Melamed;Fred Roberts - 通讯作者:
Fred Roberts
Evaluation of Mesalt dressings and continuous wet saline dressings in ulcerating metastatic skin lesions
美盐敷料和连续湿盐水敷料对溃疡性转移性皮肤病变的评价
- DOI:
10.1097/00002820-199404000-00009 - 发表时间:
1994 - 期刊:
- 影响因子:2.6
- 作者:
C. A. Upright;C. Salton;Fred Roberts;Joan K. Murphy - 通讯作者:
Joan K. Murphy
Pharmacokinetics and anaesthesia
- DOI:
10.1093/bjaceaccp/mkl058 - 发表时间:
2007-02-01 - 期刊:
- 影响因子:
- 作者:
Fred Roberts;Dan Freshwater-Turner - 通讯作者:
Dan Freshwater-Turner
Computer science and decision theory: preface
- DOI:
10.1007/s10479-008-0342-1 - 发表时间:
2008-03-29 - 期刊:
- 影响因子:4.500
- 作者:
Fred Roberts;Alexis Tsoukiàs - 通讯作者:
Alexis Tsoukiàs
Fred Roberts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fred Roberts', 18)}}的其他基金
DIMACS Special Focus on Mechanisms and Algorithms to Augment Human Decision Making
DIMACS 特别关注增强人类决策的机制和算法
- 批准号:
1941871 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Three Decades of DIMACS: The Journey Continues
DIMACS 的三个十年:旅程仍在继续
- 批准号:
1939862 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Workshop: Modeling of Infectious Diseases with a Focus on Ebola; March 6-7, 2016; Dakar, Senegal
研讨会:以埃博拉为重点的传染病建模;
- 批准号:
1624108 - 财政年份:2016
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Mathematics of Planet Earth beyond 2013 (MPE 2013+)
2013 年以后的地球数学 (MPE 2013 )
- 批准号:
1246305 - 财政年份:2012
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
The Challenge of Interdisciplinary Education: Math-Bio
跨学科教育的挑战:数学-生物
- 批准号:
1020166 - 财政年份:2010
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
Workshop on Mathematical Challenges for Sustainability
可持续发展数学挑战研讨会
- 批准号:
1053887 - 财政年份:2010
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Workshops: Special Focus on Algorithmic Decision Theory
研讨会:特别关注算法决策理论
- 批准号:
1024722 - 财政年份:2010
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Genome Structure and Variation Workshop to be held in the summer 2011 at Rutgers Center for Discrete Mathematics and Theoretical Computer Science (DIMACS).
基因组结构和变异研讨会将于 2011 年夏季在罗格斯大学离散数学和理论计算机科学中心 (DIMACS) 举行。
- 批准号:
1062170 - 财政年份:2010
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
AF: Small: Computer Science and Decision Making
AF:小:计算机科学与决策
- 批准号:
0916782 - 财政年份:2009
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
相似海外基金
HDR TRIPODS: Building the Foundation for a Data-Intensive Studies Center-
HDR TRIPODS:为数据密集型研究中心奠定基础-
- 批准号:
1934553 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
- 批准号:
1934813 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
HDR TRIPODS: Collaborative Research: Foundations of Greater Data Science
HDR TRIPODS:协作研究:大数据科学的基础
- 批准号:
1934962 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
HDR TRIPODS: UIC Foundations of Data Science Institute
HDR TRIPODS:UIC 数据科学研究所基础
- 批准号:
1934915 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
- 批准号:
1934931 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
HDR TRIPODS: UT Austin Institute on the Foundations of Data Science
HDR TRIPODS:UT Austin 数据科学基础研究所
- 批准号:
1934932 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
HDR TRIPODS: Innovations in Data Science: Integrating Stochastic Modeling, Data Representations, and Algorithms
HDR TRIPODS:数据科学的创新:集成随机建模、数据表示和算法
- 批准号:
1934964 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
HDR TRIPODS: UC Davis TETRAPODS Institute of Data Science
HDR TRIPODS:加州大学戴维斯分校 TETRAPODS 数据科学研究所
- 批准号:
1934568 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
- 批准号:
1934843 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
HDR TRIPODS: D4 (Dependable Data-Driven Discovery) Institute
HDR TRIPODS:D4(可靠数据驱动的发现)研究所
- 批准号:
1934884 - 财政年份:2019
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant