HDR TRIPODS: UT Austin Institute on the Foundations of Data Science

HDR TRIPODS:UT Austin 数据科学基础研究所

基本信息

  • 批准号:
    1934932
  • 负责人:
  • 金额:
    $ 150万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

This project establishes a new institute on the Foundations of Data Science at the University of Texas at Austin. The Institute will be a collaboration between eight PIs in the electrical engineering, computer science, mathematics and statistics departments at UT Austin, as well as postdocs and graduate students from the new programs this Institute establishes. It will form a central hub for theoretical research into machine learning and data science by looking at foundational approaches to analysis and design. This is necessary to devise novel complex and sophisticated machine-learning and artificial-intelligence theory and algorithms that can handle the accelerating scale of received data and the faster computational speeds of computers. The algorithms and systems will interpret and predict behavior from data and the environment with the goal towards better design methods performed in a principled way. The research will also open avenues for applications in fields such as autonomous vehicles and personalized medicine. The research and education will be integrated to create new inter-departmental postdoctoral and graduate research programs, establish a unified degree and portfolio program in data science at UT Austin, run dedicated seminar series and hold workshops, and partner with industry as well as domain experts in the sciences. It will significantly expand, via funded initiatives, the PIs' ongoing efforts to expand participation of under-represented groups in this important field.Research focuses on fundamental mathematical theory of machine learning and optimization, including neural networks, robustness, and graphs. The research is organized around three themes: (a) developing an algorithmic theory for deep learning, with new and provable methods for training, doing hyper parameter optimization and developing confidence measures, (b) making machine learning robust to both adversarial and incidental errors in data, and (c) devising new methods for statistical inference using graph algorithms, including fast estimation of graph statistics, and their use in biological and vision applications.This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目在德克萨斯大学奥斯汀分校建立了一个新的数据科学基础研究所。该研究所将是德克萨斯大学奥斯汀分校电气工程、计算机科学、数学和统计系的八名PI以及该研究所设立的新项目的博士后和研究生之间的合作。它将通过研究分析和设计的基本方法,形成机器学习和数据科学理论研究的中心枢纽。这对于设计新颖、复杂和复杂的机器学习和人工智能理论和算法是必要的,这些理论和算法可以处理接收数据的加速规模和计算机更快的计算速度。算法和系统将从数据和环境中解释和预测行为,目标是以有原则的方式执行更好的设计方法。这项研究还将为自动驾驶汽车和个性化医疗等领域的应用开辟道路。研究和教育将被整合,以创建新的跨部门博士后和研究生研究项目,在德克萨斯大学奥斯汀分校建立统一的数据科学学位和组合项目,举办专门的研讨会系列和研讨会,并与行业和科学领域的专家合作。它将通过资助的倡议,显著扩大私人投资机构正在进行的努力,以扩大这一重要领域中代表不足的群体的参与。研究重点是机器学习和优化的基本数学理论,包括神经网络、稳健性和图表。研究围绕三个主题进行:(A)开发深度学习的算法理论,采用新的和可证明的训练方法,进行超参数优化和开发置信度度量,(B)使机器学习对数据中的对抗性和偶然性错误具有健壮性,以及(C)利用图形算法设计统计推断的新方法,包括快速估计图形统计,该项目是国家科学基金会利用数据革命(HDR)大创意活动的一部分。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sujay Sanghavi其他文献

Stratospheric chlorine activation in the Arctic winters 1995/96–2001/02 derived from GOME OClO measurements
1995/96–2001/02 北极冬季平流层氯活化来自 GOME OClO 测量
  • DOI:
    10.1016/j.asr.2003.08.069
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    S. Kühl;W. Wilms;S. Beirle;C. Frankenberg;M. Grzegorski;J. Hollwedel;F. Khokhar;Sarit Kraus;U. Platt;Sujay Sanghavi;C. V. Friedeburg;T. Wagner
  • 通讯作者:
    T. Wagner
Geometric Median (GM) Matching for Robust Data Pruning
用于稳健数据修剪的几何中值 (GM) 匹配
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anish Acharya;I. Dhillon;Sujay Sanghavi
  • 通讯作者:
    Sujay Sanghavi
Serving content with unknown demand: the high-dimensional regime
  • DOI:
    10.1007/s11134-015-9443-0
  • 发表时间:
    2015-04-12
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Sharayu Moharir;Javad Ghaderi;Sujay Sanghavi;Sanjay Shakkottai
  • 通讯作者:
    Sanjay Shakkottai
Learning Graphical Models for Hypothesis Testing
学习假设检验的图形模型
In-Context Learning with Transformers: Softmax Attention Adapts to Function Lipschitzness
使用 Transformers 进行上下文学习:Softmax Attention 适应函数 Lipschitzness
  • DOI:
    10.48550/arxiv.2402.11639
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liam Collins;Advait Parulekar;Aryan Mokhtari;Sujay Sanghavi;Sanjay Shakkottai
  • 通讯作者:
    Sanjay Shakkottai

Sujay Sanghavi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sujay Sanghavi', 18)}}的其他基金

Collaborative Research: EnCORE: Institute for Emerging CORE Methods in Data Science
合作研究:EnCORE:数据科学新兴核心方法研究所
  • 批准号:
    2217069
  • 财政年份:
    2022
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
AF: Medium: Dropping Convexity: New Algorithms, Statistical Guarantees and Scalable Software for Non-convex Matrix Estimation
AF:中:降低凸性:用于非凸矩阵估计的新算法、统计保证和可扩展软件
  • 批准号:
    1564000
  • 财政年份:
    2016
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
CIF: Medium: Collaborative Research: New Approaches to Robustness in High-Dimensions
CIF:中:协作研究:高维鲁棒性的新方法
  • 批准号:
    1302435
  • 财政年份:
    2013
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
CAREER: Networks and Statistical Inference: New Connections and Algorithms
职业:网络和统计推断:新连接和算法
  • 批准号:
    0954059
  • 财政年份:
    2010
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
NetSE: Small: Social Networks in the Real World: From Sensing to Structure Analysis
NetSE:小型:现实世界中的社交网络:从感知到结构分析
  • 批准号:
    1017525
  • 财政年份:
    2010
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Shaping, Learning and Optimizing Dynamic Networks
NeTS:媒介:协作研究:塑造、学习和优化动态网络
  • 批准号:
    0964391
  • 财政年份:
    2010
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant

相似海外基金

TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
  • 批准号:
    2023109
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
  • 批准号:
    2023239
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
  • 批准号:
    2023495
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
  • 批准号:
    2023166
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
HDR TRIPODS: Building the Foundation for a Data-Intensive Studies Center-
HDR TRIPODS:为数据密集型研究中心奠定基础-
  • 批准号:
    1934553
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
  • 批准号:
    1934813
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
HDR TRIPODS: Collaborative Research: Foundations of Greater Data Science
HDR TRIPODS:协作研究:大数据科学的基础
  • 批准号:
    1934962
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
HDR TRIPODS: UIC Foundations of Data Science Institute
HDR TRIPODS:UIC 数据科学研究所基础
  • 批准号:
    1934915
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
HDR TRIPODS: Data Science Principles of the Human-Machine Convergence
HDR TRIPODS:人机融合的数据科学原理
  • 批准号:
    1934924
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
  • 批准号:
    1934931
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了