HDR TRIPODS: UC Davis TETRAPODS Institute of Data Science

HDR TRIPODS:加州大学戴维斯分校 TETRAPODS 数据科学研究所

基本信息

  • 批准号:
    1934568
  • 负责人:
  • 金额:
    $ 150万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The project at UC Davis will establish the UC Davis TETRAPODS Institute of Data Science (UCD4IDS), which will be composed of thirty-five researchers (four PIs and thirty-one senior personnel) coming from four departments (Computer Science, Electrical & Computer Engineering, Mathematics, and Statistics) and will break interdepartmental barriers and promote interdisciplinary research collaborations among faculty members, postdocs, and graduate students. The project will encourage innovative and robust research, and provide education and mentoring of graduate students and postdocs in data science. Students and postdocs engaged in this project will be trained to be the next generation of interdisciplinary data scientists: they will gain deep knowledge of some focused areas, and at the same time, broaden their perspectives in other diverse fields. The UCD4IDS will bring in the insights gained by the experience of the faculty members in the four primary departments as well as application fields such as neuroscience, medical and health sciences, and veterinary medicine. The UCD4IDS will organize: a) round-table discussions and breakout sessions after weekly seminars related to data science; b) quarterly colloquia on data science; and c) annual three-day workshops. The project will also coordinate and develop diverse courses at UC Davis, with graduate students involved in the project taking at least one course in each of the four departments. The PI team will also leverage local programs to recruit, support, and retain graduate students, postdocs, and new faculty members from underrepresented groups by matching them to appropriate mentors. For the dissemination of the research and educational results, the PI team plans to: 1) make colloquia and workshop talk slides, lecture notes, and codes available online, which will reach out to our current and future collaborators and the general public; and 2) organize mini-symposia and workshops on foundations of data science at targeted conferences.Research at the UCD4IDS will focus on three broad themes: 1) Fundamentals of machine learning directed toward biological and medical applications; 2) Optimization theory and algorithms for machine learning including numerical solvers for large-scale nontrivial learning problems; and 3) High-dimensional data analysis on graphs and networks. The algorithms and software tools to be developed will make a positive impact in solving practical data-analysis and machine-learning problems in diverse fields, e.g., computer science (analyzing friendship relations in social networks); electrical engineering (monitoring and controlling sensor networks); civil engineering (monitoring traffic flow on a road network); and in particular, biology and medicine (analyzing data measured on real neural networks, detecting changes in the brain structures due to diseases, imaging live biological cells for analyzing their growth, etc.). The technical goals of this project are: 1) geometric understanding of high-dimensional data, which may allow efficient (re)sampling from manifolds representing certain phenomena of interest and classifying subtle yet critical differences that often appear in biological and medical applications; 2) providing theoretical guarantees and efficient numerical algorithms for non-convex optimization, which is crucial to machine learning; and 3) deepening understanding of how local interactions between individual entities (e.g., neurons) lead to global coordination and decision making. This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
加州大学戴维斯分校的该项目将建立加州大学戴维斯分校数据科学研究所(UCD 4 IDS),该研究所将由来自四个系(计算机科学,电气计算机工程,数学和统计学)的35名研究人员(4名PI和31名高级人员)组成,并将打破部门间的障碍,促进教师,博士后和研究生之间的跨学科研究合作。该项目将鼓励创新和强大的研究,并为数据科学的研究生和博士后提供教育和指导。参与该项目的学生和博士后将被培养成为下一代跨学科数据科学家:他们将获得一些重点领域的深入知识,同时拓宽他们在其他不同领域的视野。UCD 4 IDS将带来四个主要部门以及神经科学,医学和健康科学以及兽医等应用领域的教师经验所获得的见解。UCD 4 IDS将组织:a)每周一次的数据科学研讨会之后的圆桌讨论和分组会议; B)每季度一次的数据科学座谈会;以及c)每年一次的为期三天的研讨会。该项目还将协调和开发加州大学戴维斯分校的各种课程,参与该项目的研究生将在四个部门中的每个部门至少选修一门课程。PI团队还将利用当地计划,通过将他们与适当的导师相匹配,来招募,支持和留住来自代表性不足群体的研究生,博士后和新教师。为了传播研究和教育成果,PI团队计划:1)在线提供座谈会和研讨会的演讲幻灯片,讲座笔记和代码,这将接触到我们现在和未来的合作者和公众; 2)在目标会议上组织关于数据科学基础的小型研讨会和研讨会。UCD 4 IDS的研究将集中在三个广泛的主题上:1)机器学习的基础知识,针对生物和医学应用; 2)机器学习的优化理论和算法,包括大规模非平凡学习问题的数值求解器; 3)图形和网络上的高维数据分析。待开发的算法和软件工具将对解决不同领域的实际数据分析和机器学习问题产生积极影响,例如,计算机科学(分析社交网络中的友谊关系);电气工程(监测和控制传感器网络);土木工程(监测道路网络上的交通流量);以及特别是生物学和医学(分析在真实的神经网络上测量的数据,检测由于疾病引起的大脑结构的变化,对活生物细胞成像以分析它们的生长等)。该项目的技术目标是:1)对高维数据的几何理解,这可能允许从代表某些感兴趣现象的流形中进行有效的(重新)采样,并对生物和医学应用中经常出现的细微但关键的差异进行分类; 2)为非凸优化提供理论保证和有效的数值算法,这对机器学习至关重要;以及3)加深对个体实体之间的局部交互(例如,神经元)导致全局协调和决策。该项目是美国国家科学基金会利用数据革命(HDR)大创意活动的一部分。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(220)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-Dimensional Asymptotic Behavior of Inference Based on Gwas Summary Statistics
基于Gwas汇总统计的推理高维渐近行为
  • DOI:
    10.5705/ss.202021.0060
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Jiang, Jiming;Jiang, Wei;Paul, Debashis;Zhang, Yiliang;Zhao, Hongyu
  • 通讯作者:
    Zhao, Hongyu
Improved Bounds for the Expected Number of k-Sets
改进 k 集预期数量的界限
  • DOI:
    10.1007/s00454-022-00469-7
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Leroux, Brett;Rademacher, Luis
  • 通讯作者:
    Rademacher, Luis
A note on band surgery and the signature of a knot
关于带状手术的注释和结的签名
A One-Sample Decentralized Proximal Algorithm for Non-Convex Stochastic Composite Optimization
  • DOI:
    10.48550/arxiv.2302.09766
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tesi Xiao;Xuxing Chen;K. Balasubramanian;Saeed Ghadimi
  • 通讯作者:
    Tesi Xiao;Xuxing Chen;K. Balasubramanian;Saeed Ghadimi
Knowledge integration and decision support for accelerated discovery of antibiotic resistance genes.
  • DOI:
    10.1038/s41467-022-29993-z
  • 发表时间:
    2022-04-29
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Naoki Saito其他文献

Posture control considering joint stiffness of a robot arm driven by rubberless artificial muscle
考虑无橡胶人工肌肉驱动机器人手臂关节刚度的姿势控制
Numerical Modelling on CO2 Storage Capacity in Depleted Gas Reservoirs
枯竭气藏二氧化碳封存能力的数值模拟
  • DOI:
    10.3390/en14133978
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Takashi Akai;Naoki Saito;M. Hiyama;H. Okabe
  • 通讯作者:
    H. Okabe
T2K前置検出器 アップグレード計画の概要
T2K前置探测器升级计划概述
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naoki Saito;Taiki Kuribara;Kiichiro Totani;横山将志
  • 通讯作者:
    横山将志
Chemistry of Ecteinascidin Marine Natural
海洋天然海鞘素的化学性质
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naoki Saito;Satoru Toriumu;Mitsuhiro Tsujimoto;Panithi Saktrakulkla;Khanit Suwanborirux;Saito N.
  • 通讯作者:
    Saito N.
Arabidopsis Calcium Dependent Protein Kinase, CPK6 Functions in Methyl Jasmonate Signaling in Guard Cells
拟南芥钙依赖性蛋白激酶、CPK6 在保卫细胞茉莉酸甲酯信号传导中的作用
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miura Y;Matsui T;Tojo Y;Osanai H.;Naoki Saito;Shintaro Munemasa;Shintaro Munemasa
  • 通讯作者:
    Shintaro Munemasa

Naoki Saito的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Naoki Saito', 18)}}的其他基金

Flexible and Sound Computational Harmonic Analysis Tools for Graphs and Networks
灵活可靠的图形和网络计算谐波分析工具
  • 批准号:
    1912747
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Multiscale Basis Dictionaries and Best Bases for Data Analysis on Graphs and Networks
多尺度基础字典以及图和网络数据分析的最佳基础
  • 批准号:
    1418779
  • 财政年份:
    2014
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
Object-Oriented Image Analysis and Synthesis via Computational Harmonic Analysis and Boundary Value Problems
通过计算调和分析和边值问题进行面向对象的图像分析和合成
  • 批准号:
    0410406
  • 财政年份:
    2004
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Efficient Description, Modeling, and Recognition of Natural Imagery via a Local Basis Library
通过局部基础库对自然图像进行高效描述、建模和识别
  • 批准号:
    9973032
  • 财政年份:
    1999
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant

相似海外基金

TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
  • 批准号:
    2023109
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
  • 批准号:
    2023239
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
  • 批准号:
    2023495
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
  • 批准号:
    2023166
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
HDR TRIPODS: Building the Foundation for a Data-Intensive Studies Center-
HDR TRIPODS:为数据密集型研究中心奠定基础-
  • 批准号:
    1934553
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
  • 批准号:
    1934813
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
HDR TRIPODS: Collaborative Research: Foundations of Greater Data Science
HDR TRIPODS:协作研究:大数据科学的基础
  • 批准号:
    1934962
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
HDR TRIPODS: UIC Foundations of Data Science Institute
HDR TRIPODS:UIC 数据科学研究所基础
  • 批准号:
    1934915
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
HDR TRIPODS: Data Science Principles of the Human-Machine Convergence
HDR TRIPODS:人机融合的数据科学原理
  • 批准号:
    1934924
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
  • 批准号:
    1934931
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了