2-Dimensional Zeolite Nanosheet Tiled Ion Separators for Approaching Ideal Performance in Redox Flow Batteries

二维沸石纳米片平铺离子分离器可实现氧化还原液流电池的理想性能

基本信息

  • 批准号:
    1935205
  • 负责人:
  • 金额:
    $ 30.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Redox flow batteries (RFBs) are large-scale energy storage systems that enable the use of intermittent renewable energy resources, such as solar and wind power, which may not always be available when energy is being consumed. Unlike other battery technologies, RFBs can store significant amounts of energy in fluids in large reservoirs. The fluids are then flowed through cells to insert (i.e. charging) or to extract energy (i.e. discharging) from the system. Significant improvements in energy storage capacity, power output and material costs are necessary to enable wide-scale deployment of this technology. This fundamental research project will help solve these needs by addressing key barriers in the ion separation membrane component whose performance impacts overall energy efficiency and system lifetime for power generation and energy storage. The existing ion separators are polymer-based, which have inherent shortcomings of inadequate selectivity and material instability that reduce the RFB efficiency and operation life. Similarly, membranes based on inorganic oxides such as ceramics have issues with durability and efficiency. This project aims to demonstrate a new zeolite nanomaterial-based membrane that can approach ideal performance as an ion separator and help unlock the potential of aqueous RFBs for cost-effective energy storage. The findings of this basic research project will advance knowledge on nanomaterial synthesis and ion transport behavior in the new membranes. The multidisciplinary research activities of this program will offer excellent opportunities for training next generation scientists and engineers in the frontiers of emerging energy technologies and critical material development.This project will focus on a new 2-dimensional zeolite nanosheet tiled ion separation membrane (ZNTM). This project will yield fundamental knowledge on 2D nanomaterial synthesis and ion transport behavior in the new structure of subnanometer-pore 2D nanosheet membranes. Defect-free zeolite membranes, e.g. single crystals, are theoretically capable of conducting protons with high selectivity and exceptional material stability in RFB operations. However, these favorable properties cannot be effectively realized by the conventional mixed matrix zeolite membrane structures because of excessive metal ion crossover through shortcutting intercrystalline spaces and high resistance from a relatively large thickness of membrane. The project will address the chief challenges in synthesizing and property tailoring of 2D ionic sieve crystals and effectively utilize their unique properties by the novel ZNTM structure. Fundamental studies are directed to identify the conditions for synthesizing nanometer-thick zeolite nanosheets with controlled surface chemistry, geometric and dimensional properties (i.e. adequately large width-to-thickness aspect ratios), and channel orientation in preferable direction. Systematic experiments will be carried out to establish an effective methodology for fabricating the ultrathin 2D ZNTM ion separators. The ion selectivity, conductivity, and material stability of the ion separators will be extensively examined to understand their dependences on the microstructure and surface chemistry of the zeolite nanosheets and ZNTM. The ZNTM with verified ion selectivity and minimized electric resistance will be evaluated for full cell RFB operation including performance in battery energy efficiency, power density, thermal stability, and lifetime. The evaluations of the new membranes will be concentrated on the industrially important all-vanadium and ion-chromium RFB chemistries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
氧化还原液流电池(RFB)是一种大规模的能量存储系统,能够使用间歇性的可再生能源,如太阳能和风能,这些能源在能源消耗时可能并不总是可用的。与其他电池技术不同,RFB可以在大型储液器中的液体中储存大量能量。 然后,流体流过电池以插入(即充电)或从系统提取能量(即放电)。要实现这项技术的大规模部署,就必须大幅提高储能容量、功率输出和材料成本。该基础研究项目将通过解决离子分离膜组件中的关键障碍来帮助解决这些需求,这些障碍的性能影响发电和储能的整体能源效率和系统寿命。现有的离子分离器是基于聚合物的,其具有选择性不足和材料不稳定的固有缺点,这降低了RFB效率和操作寿命。类似地,基于无机氧化物如陶瓷的膜具有耐久性和效率的问题。该项目旨在展示一种新的基于沸石纳米材料的膜,该膜可以作为离子分离器达到理想的性能,并有助于释放水性RFB的潜力,用于具有成本效益的能量存储。该基础研究项目的发现将促进对纳米材料合成和新型膜中离子传输行为的认识。该计划的多学科研究活动将为培养新兴能源技术和关键材料开发前沿的下一代科学家和工程师提供绝佳的机会。该项目将专注于新型二维沸石纳米片平铺离子分离膜(ZNTM)。该项目将产生关于2D纳米材料合成和亚纳米孔2D纳米片膜的新结构中的离子传输行为的基础知识。无缺陷的沸石膜,例如单晶,理论上能够在RFB操作中以高选择性和优异的材料稳定性传导质子。 然而,这些有利的性能不能通过常规的混合基质沸石膜结构有效地实现,因为过量的金属离子穿过捷径晶间空间和来自相对大厚度的膜的高阻力。该项目将解决二维离子筛晶体合成和性能定制的主要挑战,并通过新颖的ZNTM结构有效地利用其独特的性能。基础研究旨在确定合成具有受控表面化学、几何和尺寸特性(即足够大的宽度与厚度纵横比)以及优选方向的通道取向的纳米厚沸石纳米片的条件。将进行系统的实验,以建立一个有效的方法来制造的ZN2D ZNTM离子分离器。将广泛研究离子分离器的离子选择性、导电性和材料稳定性,以了解它们对沸石纳米片和ZNTM的微观结构和表面化学的依赖性。将对具有经验证的离子选择性和最小电阻的ZNTM进行全电池RFB操作评估,包括电池能效、功率密度、热稳定性和寿命方面的性能。新膜的评估将集中在工业上重要的全钒和离子铬RFB化学。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Preactivated zeolite nanosheet plate-tiled membrane on porous PVDF film: Synthesis and study of proton-selective ion conduction
  • DOI:
    10.1016/j.memsci.2022.121328
  • 发表时间:
    2022-12-27
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Iskhakova, Landysh;Cao, Zishu;Dong, Junhang
  • 通讯作者:
    Dong, Junhang
Self-seeded growth of very large open-structured zeolite nanosheet assemblies with extraordinary micropore accessibility
  • DOI:
    10.1016/j.micromeso.2022.111854
  • 发表时间:
    2022-04-03
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Cao, Zishu;Iskhakova, Landysh;Dong, Junhang
  • 通讯作者:
    Dong, Junhang
ZSM-5 Zeolite Nanosheet-Based Membranes on Porous Polyvinylidene Fluoride for High-Flux Desalination
  • DOI:
    10.1021/acsanm.1c00046
  • 发表时间:
    2021-03-05
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Cao, Zishu;Iskhakova, Landysh;Dong, Junhang
  • 通讯作者:
    Dong, Junhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Junhang Dong其他文献

Synthesis and characterization of nanocrystalline (Zru0.84Yu0.16)Ou1.92–(Ceu0.85Smu0.15)Ou1.925 heterophase thin films
  • DOI:
    10.1557/jmr.2006.0041
  • 发表时间:
    2006-02-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Aniruddha Kulkarni;Alexander Bourandas;Junhang Dong;Paul A. Fuierer;Hai Xiao
  • 通讯作者:
    Hai Xiao
Formation of Liquid Columns on Liquid–Liquid Interfaces under Applied Electric Fields
外加电场下液-液界面上液柱的形成
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junhang Dong;V. F. Almeida;C. Tsouris
  • 通讯作者:
    C. Tsouris
Acidic ZSM-5 zeolite-coated long period fiber grating for optical sensing of ammonia
用于氨光学传感的酸性 ZSM-5 沸石涂层长周期光纤光栅
  • DOI:
    10.1039/c0jm02523b
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiling Tang;Justin Provenzano;Zhi Xu;Junhang Dong;H. Duan;H. Xiao
  • 通讯作者:
    H. Xiao
Effects of Applied Electric Fields on Drop—Interface and Drop—Drop Coalescence
施加电场对液滴界面和液滴聚结的影响
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junhang Dong;Valmor F. de Almeida;C. Tsouris
  • 通讯作者:
    C. Tsouris
Characterizing the gas adsorption-dependent dielectric constant for silicalite nanoparticles at microwave frequencies by a coaxial cable Fabry-Pérot interferometric sensing method
通过同轴电缆法布里-珀罗干涉传感方法表征微波频率下硅沸石纳米颗粒的气体吸附相关介电常数
  • DOI:
    10.18689/mjnn-1000119
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Shixuan Zeng;Adam Trontz;Zishu Cao;H. Xiao;Junhang Dong
  • 通讯作者:
    Junhang Dong

Junhang Dong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Junhang Dong', 18)}}的其他基金

Collaborative Research: Zeolite Thin Films as Efficient and Robust Ion Exchange Membranes in Redox Flow Batteries for Renewable Energy Storage
合作研究:沸石薄膜作为可再生能源存储氧化还原液流电池中高效且坚固的离子交换膜
  • 批准号:
    1263860
  • 财政年份:
    2013
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Continuing Grant
Study of Molecular Diffusion in Zeolites by Time-Resolved Microscopic Laser Refractometry
时间分辨显微激光折射法研究沸石中的分子扩散
  • 批准号:
    0854203
  • 财政年份:
    2009
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Standard Grant

相似国自然基金

Zeolite@g-CN复合材料的设计、制备及其在择形催化过程中的性能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
丙烷脱氢Pt@hierarchical zeolite催化剂的设计制备与反应调控
  • 批准号:
    22178062
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
基于金属与酸性位平衡调控的M/Zeolite协同催化苯加氢烷基化研究
  • 批准号:
    21908203
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
吸附-催化双功能“贵金属-MOx@zeolite(M=Ce,Mn,Sn)”核壳催化剂创制及其降解典型VOCs研究
  • 批准号:
    21976078
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Standard Grant
CAREER: Engineering Circular Hydrocarbon Reactions in Zeolite-based Catalysts
职业:在沸石基催化剂中设计循环碳氢化合物反应
  • 批准号:
    2338497
  • 财政年份:
    2024
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Continuing Grant
PFI (MCA): Hydrogen and Solid Carbon Production with Electrified Methane Pyrolysis in Zeolite-Protected, Metal Membrane Reactor
PFI (MCA):在沸石保护的金属膜反应器中通过带电甲烷热解生产氢气和固体碳
  • 批准号:
    2325780
  • 财政年份:
    2023
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Standard Grant
Elucidation of the origin of zeolite crystallization and innovation of production methods
沸石结晶起源的阐明及生产方法的创新
  • 批准号:
    23H05454
  • 财政年份:
    2023
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Light Alkane Upgrading Through Dehydrogenative C-N Coupling with NH3 over Bifunctional Metal/Zeolite Catalyst
双功能金属/沸石催化剂上通过与 NH3 脱氢 C-N 偶联进行轻质烷烃升级
  • 批准号:
    2247058
  • 财政年份:
    2023
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Standard Grant
STTR Phase I: Effect of Alcohol Concentration on Lactic to Acrylic Selectivity and Deactivation Rate over Na-FAU Zeolite Catalysts
STTR 第一阶段:酒精浓度对 Na-FAU 沸石催化剂上乳酸至丙烯酸的选择性和失活率的影响
  • 批准号:
    2151176
  • 财政年份:
    2023
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Standard Grant
Establishment of site-selective sequential dealumination and defect healing in the micropores of zeolite
沸石微孔中位点选择性顺序脱铝和缺陷修复的建立
  • 批准号:
    22KJ0675
  • 财政年份:
    2023
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Hybridization of zeolite and metal-organic framework (MOF) glass as bifunctional catalyst for high productivity of light olefins from CO2
沸石和金属有机骨架(MOF)玻璃的杂化作为双功能催化剂,用于从二氧化碳中高产率生产轻质烯烃
  • 批准号:
    23K13719
  • 财政年份:
    2023
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Valorisation of agro-industrial waste to obtain zeolite-based composite materials and their use in environmental remediation and biofuel production
农工业废物的增值以获得沸石基复合材料及其在环境修复和生物燃料生产中的应用
  • 批准号:
    EP/Y003896/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Research Grant
Role of Alkali Cations During Interzeolite Conversion of Zeolite Synthesis
碱金属阳离子在沸石合成中沸石转化过程中的作用
  • 批准号:
    575821-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了