CAREER: Engineering Circular Hydrocarbon Reactions in Zeolite-based Catalysts
职业:在沸石基催化剂中设计循环碳氢化合物反应
基本信息
- 批准号:2338497
- 负责人:
- 金额:$ 57.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-01 至 2029-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Chemical processes that breakdown plastic waste and remanufacture the deconstructed products to valuable fuels and chemicals are attractive alternatives to fossil-fuels for hard-to-decarbonize sectors such as aviation fuels. Such plastic upcycling is especially valuable when it can be achieved at moderate temperatures in energy efficient processes. Catalysts offer a route to that end by lowering reaction temperature and selectively directing conversion of plastic to products that serve as building blocks for a broad range of fuels, consumer goods, pharmaceuticals, and building materials, to name a few. Zeolites are a class of porous crystalline catalysts that are especially suitable for waste plastic deconstruction, but further research and development is needed to improve their efficiency, product selectivity, and durability. Thus, this project investigates key design factors that affect the overall effectiveness of zeolite catalysts for the breakdown of a prevalent class of waste plastic, polyolefins. The project is supported by integrated educational and outreach activities aimed primarily at undergraduate and graduate students.While catalysts are ubiquitous in the production of fuels and important chemical intermediates, the design of advanced catalysts that possess high reactivity, selectivity, and stability remains paramount for efficiently and sustainably abating pollution while lowering energy demands and decreasing carbon emissions. Here, this rational design is employed in the hydrocracking of polyolefins using bifunctional metal/zeolite catalysts, where zeolitic voids simultaneously provide high reactivity and tailored selectivity, but limit catalyst efficiency and stability due to diffusional constraints of bulky products. Hierarchical zeolites with hybrid pore structures can be utilized to address this inaccessibility of bulky polymer molecules, but the direct effect on reaction and deactivation mechanisms, especially of these complex multiphase systems is not well-established. The project thus aims to engineer hierarchical (bifunctional) zeolites in selective hydrocracking of waste polyolefins, based on hypotheses that enhancements of hierarchical structuring affect reaction and deactivation rates for polyolefin cracking beyond simple diffusional impacts and include effects of pore structure (i.e., zeolite framework), connectivity, communication (metal:acid balance/proximity) and reactions occurring within the mesoporous regions and surface protons. By combining synthetic protocols with detailed reaction pathway and deactivation analysis, the project will reveal new insights on how shape-selectivity and transport phenomena affect the performance of these hierarchical, bifunctional catalysts for transformation of waste polyolefins into useful products. Those insights will aid in understanding the entire catalytic lifecycle, including specific mechanistic details that can be extended to improve catalyst efficiency for reactions of various feedstocks related to hydrocarbon and oxygenate processing (i.e., biomass, renewable alcohols, or CO2) and different zeolite or zeotype architectures. Research results from this award will be proactively incorporated into an undergraduate elective entitled Green and Catalytic Chemistry that will incorporate interactive components like hands-on catalysis (plastic upcycling and aqueous pollutant degradation) and separation (CO2 capture) experiments, and “Sustainability Spotlights” based on media articles covering energy and climate related topics. The project will also strengthen the broader catalysis community through “CatChats” for younger graduate students in catalysis labs at various universities. These meetups will create a supportive network of peers, via initial virtual connections that will be expanded at conferences, workshops, and other in-person venues.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分解塑料废物并将分解后的产品再制造成有价值的燃料和化学品的化学工艺是化石燃料的有吸引力的替代品,用于航空燃料等难以脱碳的行业。当这种塑料升级循环可以在节能过程中在中等温度下实现时,它特别有价值。催化剂通过降低反应温度并选择性地将塑料转化为用作广泛燃料、消费品、药品和建筑材料的构建块的产品来提供实现这一目标的途径。沸石是一类多孔结晶催化剂,特别适用于废塑料解构,但需要进一步研究和开发,以提高其效率,产品选择性和耐用性。因此,本项目研究了影响沸石催化剂分解一种常见的废塑料聚烯烃的总体有效性的关键设计因素。该项目主要针对本科生和研究生开展综合教育和推广活动。虽然催化剂在燃料和重要化学中间体的生产中无处不在,但设计具有高反应性、选择性和稳定性的先进催化剂对于有效和可持续地减少污染,同时降低能源需求和减少碳排放仍然至关重要。在此,这种合理的设计被用于使用双官能金属/沸石催化剂的聚烯烃的加氢裂化中,其中沸石空隙同时提供高反应性和定制的选择性,但由于大体积产物的扩散约束而限制催化剂效率和稳定性。具有混合孔结构的分级沸石可用于解决大体积聚合物分子的这种不可接近性,但对反应和失活机制的直接影响,特别是这些复杂的多相体系的直接影响还没有得到很好的建立。因此,该项目的目的是在废聚烯烃的选择性加氢裂化中设计分级(双功能)沸石,基于以下假设:分级结构的增强影响聚烯烃裂化的反应和失活速率,而不仅仅是简单的扩散影响,并且包括孔结构的影响(即,沸石骨架)、连接性、连通性(金属:酸平衡/邻近性)以及在中孔区域和表面质子内发生的反应。通过将合成方案与详细的反应途径和失活分析相结合,该项目将揭示形状选择性和传输现象如何影响这些分层双功能催化剂的性能的新见解,以将废聚烯烃转化为有用的产品。这些见解将有助于理解整个催化生命周期,包括可以扩展以提高与烃和烃类加工相关的各种原料的反应的催化剂效率的具体机理细节(即,生物质、可再生醇或CO2)和不同的沸石或沸石型结构。该奖项的研究成果将积极纳入题为“绿色和催化化学”的本科选修课,该选修课将纳入互动组件,如动手催化(塑料升级循环和水污染物降解)和分离(CO2捕获)实验,以及基于媒体文章的“可持续发展聚光灯”,涵盖能源和气候相关主题。该项目还将通过为各大学催化实验室的年轻研究生提供的“CatChats”,加强更广泛的催化社区。这些聚会将通过最初的虚拟联系建立一个支持性的同行网络,这些联系将在会议,研讨会和其他面对面的场所得到扩展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michele Sarazen其他文献
Michele Sarazen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michele Sarazen', 18)}}的其他基金
CAS: Reaction and Deactivation Implications of Pore structure, Nodal Identity, and Coordination Environment on Small-molecule Oxidations by Metal-organic Frameworks
CAS:孔结构、节点特性和配位环境对金属有机框架小分子氧化的反应和失活影响
- 批准号:
2246949 - 财政年份:2023
- 资助金额:
$ 57.53万 - 项目类别:
Standard Grant
EFRI DCheM: Engineering Interfaces between Plasma, Catalysts, and Reactor Design for Natural Gas Conversion to Liquid Products
EFRI DCheM:等离子体、催化剂和反应器设计之间的工程接口,用于将天然气转化为液体产品
- 批准号:
2029425 - 财政年份:2020
- 资助金额:
$ 57.53万 - 项目类别:
Standard Grant
相似国自然基金
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
2024 - 2025 National Science Foundation (NSF) Computer and Information Science and Engineering (CISE) Research Experiences for Undergraduates (REU) Principal Investigator Workshops
2024 - 2025 美国国家科学基金会 (NSF) 计算机与信息科学与工程 (CISE) 本科生研究经验 (REU) 首席研究员研讨会
- 批准号:
2407231 - 财政年份:2024
- 资助金额:
$ 57.53万 - 项目类别:
Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM/IEEE International Conference on Software Engineering
旅行:2024 年 ACM/IEEE 软件工程国际会议 NSF 学生旅行补助金
- 批准号:
2413092 - 财政年份:2024
- 资助金额:
$ 57.53万 - 项目类别:
Standard Grant
Conference: Polymeric Materials: Science and Engineering Division Centennial Celebration at the Spring 2024 American Chemical Society Meeting
会议:高分子材料:美国化学会 2024 年春季会议科学与工程部百年庆典
- 批准号:
2415569 - 财政年份:2024
- 资助金额:
$ 57.53万 - 项目类别:
Standard Grant
REU Site: University of Colorado, Engineering Smart Biomaterials
REU 站点:科罗拉多大学,工程智能生物材料
- 批准号:
2348856 - 财政年份:2024
- 资助金额:
$ 57.53万 - 项目类别:
Standard Grant
REU Site: Nature's machinery through the prism of Physics, Biology, Chemistry and Engineering
REU 网站:通过物理、生物、化学和工程学的棱镜观察自然的机器
- 批准号:
2349368 - 财政年份:2024
- 资助金额:
$ 57.53万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 57.53万 - 项目类别:
Standard Grant
Biology Meets Engineering: Expanding Transdisciplinary STEM Education
生物学与工程学的结合:扩展跨学科 STEM 教育
- 批准号:
2342578 - 财政年份:2024
- 资助金额:
$ 57.53万 - 项目类别:
Continuing Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319895 - 财政年份:2024
- 资助金额:
$ 57.53万 - 项目类别:
Standard Grant
CAREER: Eradicate the Gate: Empowering Learners and Equalizing Assessment in K12 Engineering Education
职业:消除大门:K12 工程教育中的学习者赋权和均衡评估
- 批准号:
2339619 - 财政年份:2024
- 资助金额:
$ 57.53万 - 项目类别:
Continuing Grant
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
- 批准号:
2339753 - 财政年份:2024
- 资助金额:
$ 57.53万 - 项目类别:
Standard Grant