Non-Hermitian nanophotonics for efficient thermophotovoltaic energy conversion
用于高效热光伏能量转换的非厄米纳米光子学
基本信息
- 批准号:1935446
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Meeting the rising global energy need with clean and efficient energy systems is one of the greatest technological challenges of our time. Efficient conversion of heat and light to electricity is crucial in overcoming this challenge. Thermophotovoltaics is a promising technique for efficiently converting heat to electricity via light without any moving parts. The heat generated from industrial processes, nuclear fission reaction, automobile exhaust or absorption of sunlight results in thermal light radiating from hot surfaces. Photovoltaic conversion of this thermal light to electricity as in solar cells is called thermophotovoltaic conversion. The theoretical efficiency limit of thermophotovoltaic systems can be as high as 80%, though experimental demonstrations lie far below this number. The primary reason for low efficiency is the broadband nature of thermal light radiating from hot surfaces. Squeezing thermal light into a narrow band of frequencies is a challenging task especially when operating at high temperatures. This project aims to develop novel strategies to confine thermal light to a narrow band of frequencies and demonstrate efficient conversion of heat to light. Successful implementation of the project will result in discovering new tools to achieve extreme control on the flow of light and heat, educate and train next-generation scientists, and develop an efficient heat-to-electricity conversion technology for energy generation and storage applications. Given that the on-grid industrial waste heat alone is nearly 20% of the total industrial energy consumption, efficient thermophotovoltaic systems can make a huge impact in meeting the clean energy needs of the planet.Technical description: Thermal radiation from hot surfaces is typically broadband in nature and limit the overall efficiency of thermophotovoltaic conversion. Confining thermal radiation to a narrow spectral band is the key to this problem. Previous attempts have investigated various nanophotonic principles to design narrowband thermal emitters or selective emitters, though their performance is still inadequate. All nanostructured optical materials degrade at high temperatures. Their optical losses significantly increase with temperature and limit the maximum possible spectral selectivity. Calculations show that a spectral contrast of at least 20 dB is required for efficient thermophotovoltaic conversion. Such high contrast over broad infrared wavelengths is not possible by conventional approach due to high optical losses in the constituent materials. Here in this project, an unorthodox approach using non-Hermitian physics or quantum optical description of resonant emitters is adopted to design thermal emitters. Unlike the conventional approach, non-Hermitian design exploits high optical losses in materials to simultaneously achieve high contrast and high emissivity. Further, a quantum optical description of the selective emitter allows its design as a system of coupled multiple nanoscale resonators. Such an approach is a paradigm shift in the design of selective emitters allowing novel many-body physical phenomena to be observed in thermal emission. As a result, new design tools such as symmetry, topology and internal phase of resonators present an unprecedented opportunity to extreme-engineer thermal emitters. This project aims to investigate the effect of these new design tools on the spatial and spectral properties of thermal radiation, build selective emitters with high contrast, directionality, and brightness, and demonstrate high-efficiency thermophotovoltaic conversion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用清洁高效的能源系统满足全球日益增长的能源需求是我们这个时代最大的技术挑战之一。将热和光有效地转化为电能对于克服这一挑战至关重要。热光电转换技术是一种很有前途的技术,可以在没有任何运动部件的情况下通过光有效地将热量转换为电能。工业过程、核裂变反应、汽车尾气或太阳光吸收产生的热量导致热光从热表面辐射。太阳能电池中这种热光到电的光伏转换称为热光伏转换。热光伏系统的理论效率极限可以高达80%,尽管实验证明远低于这个数字。低效率的主要原因是从热表面辐射的热光的宽带性质。将热光压缩成窄频带是一项具有挑战性的任务,特别是在高温下工作时。该项目旨在开发新的策略,将热光限制在狭窄的频率范围内,并展示热到光的有效转换。该项目的成功实施将导致发现新的工具,以实现对光和热的流动的极端控制,教育和培训下一代科学家,并开发用于能源生产和存储应用的高效热电转换技术。鉴于仅并网工业废热就占工业总能耗的近20%,高效的热光伏系统可以在满足地球清洁能源需求方面发挥巨大作用。技术描述:热表面的热辐射通常具有宽带特性,限制了热光伏转换的整体效率。将热辐射限制在一个狭窄的光谱带是解决这个问题的关键。之前的尝试已经研究了各种纳米光子原理来设计窄带热发射器或选择性发射器,但它们的性能仍然不够。所有的纳米结构光学材料在高温下都会降解。它们的光学损耗随温度显著增加,并限制了最大可能的光谱选择性。计算表明,有效的热光伏转换需要至少20 dB的光谱对比度。由于组成材料中的高光学损耗,通过常规方法在宽红外波长上的这种高对比度是不可能的。在本计画中,我们采用非正统的方法,使用非厄米物理或量子光学的共振辐射体描述来设计热辐射体。与传统方法不同,非厄米设计利用材料中的高光学损耗来同时实现高对比度和高发射率。此外,选择性发射器的量子光学描述允许其设计为耦合的多个纳米级谐振器的系统。这种方法是一种范式转变,在设计的选择性发射器,允许新的多体物理现象被观察到的热发射。因此,新的设计工具,如对称性,拓扑结构和谐振器的内部相位提出了一个前所未有的机会,极端工程热发射器。该项目旨在研究这些新的设计工具对热辐射的空间和光谱特性的影响,构建具有高对比度、方向性和亮度的选择性发射器,并展示高效的热光伏转换。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-Hermitian metasurface with non-trivial topology
- DOI:10.1515/nanoph-2021-0731
- 发表时间:2022-02
- 期刊:
- 影响因子:7.5
- 作者:Frank Yang;Ciril S. Prasad;Weijian Li;Rosemary Lach;H. Everitt;G. Naik
- 通讯作者:Frank Yang;Ciril S. Prasad;Weijian Li;Rosemary Lach;H. Everitt;G. Naik
Non-Hermitian metasurfaces for the best of plasmonics and dielectrics
- DOI:10.1364/ome.428469
- 发表时间:2021-07
- 期刊:
- 影响因子:2.8
- 作者:Frank Yang;A. Hwang;C. Doiron;G. Naik
- 通讯作者:Frank Yang;A. Hwang;C. Doiron;G. Naik
Optimum selective emitters for efficient thermophotovoltaic conversion
- DOI:10.1063/1.5131367
- 发表时间:2020-01-13
- 期刊:
- 影响因子:4
- 作者:Hassan, Sakib;Doiron, Chloe F.;Naik, Gururaj V.
- 通讯作者:Naik, Gururaj V.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gururaj Naik其他文献
Gururaj Naik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Hermitian几何中截面曲率的正性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
总体最小二乘问题的Hermitian解与半正定解的研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
Hermitian几何及其应用
- 批准号:12171262
- 批准年份:2021
- 资助金额:51 万元
- 项目类别:面上项目
正负曲率条件与Hermitian流形上的若干几何问题
- 批准号:12001490
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Hermitian几何中的退化完全非线性椭圆方程
- 批准号:11801587
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
关于Hermitian Yang-Mills度量的两个问题
- 批准号:11871016
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
拟Hermitian流形上的若干几何分析问题
- 批准号:11801517
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
紧Hermitian流形上复Monge-Ampère型⽅程及曲率研究
- 批准号:11801516
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Pseudo-Hermitian流形上的拟调和映射及其热流
- 批准号:11626217
- 批准年份:2016
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
Hermitian流形上的完全非线性偏微分方程
- 批准号:11601105
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
- 批准号:
2423820 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
deformed Hermitian-Yang-Mills方程式の解の存在問題
变形Hermitian-Yang-Mills方程解的存在性问题
- 批准号:
24K06730 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Hermitian Physics in Ultracold Atoms and Photonics
超冷原子和光子学中的非厄米物理
- 批准号:
2409943 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Topological insulators and free fermions: from Hermitian to non-Hermitian
拓扑绝缘体和自由费米子:从厄米特到非厄米特
- 批准号:
DP240100838 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
Exploration of novel non-Hermitian phenomena induced by active matter
探索活性物质引起的新颖非厄米现象
- 批准号:
23K13027 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
BRITE Pivot: Emergent Mechanics and Non-Hermitian Dynamics of Odd Elastic Solids
BRITE Pivot:奇数弹性固体的涌现力学和非厄米动力学
- 批准号:
2227474 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: First-Principle Control of Novel Resonances in Non-Hermitian Photonic Media
合作研究:非厄米光子介质中新型共振的第一性原理控制
- 批准号:
2326699 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
A study of solutions of the Painleve equation derived from monodromy invariant Hermitian forms.
研究从单向不变埃尔米特形式导出的 Painleve 方程的解。
- 批准号:
22KJ2518 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Controlling light with non-Hermitian Schrödinger dynamics
用非厄米薛定谔动力学控制光
- 批准号:
EP/X032256/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Non-Hermitian physics of heavy-fermion superconductors at exceptional points
重费米子超导体在特殊点的非厄米物理
- 批准号:
22KJ0752 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows