Causes and consequences of regulatory network rewiring under extreme environmental selection

极端环境选择下监管网络重布线的原因和后果

基本信息

  • 批准号:
    1936024
  • 负责人:
  • 金额:
    $ 90万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This project seeks to understand how gene circuits evolve under extreme conditions. Microorganisms that live in extreme environments, called extremophiles, are remarkable examples of life's resilience, thriving in hot springs at boiling temperatures, in brine lakes saturated with salt, and in deserts once thought to be sterile. This research uses halophiles, extremophiles that live in high salt, as a test system to map complex gene circuits that enable survival. Circuit maps are compared across halophile species resistant to different levels of salt and stress to understand how extreme conditions rewire gene circuits, and how rewiring enables adaptation in the face of stress. The high salt extremophiles of interest are members of the domain of life Archaea. Because the molecules that make up gene circuits in archaea resemble those of other domains of life, this research has the potential to reveal general principles of gene circuit evolution across the tree of life. The education plan involves collaborating with students to build solutions for analysis and visualization of archaeal data. The PI and her group mentor undergraduates through the summer Duke Data+ program to create interactive web-accessible tools for data analysis and visualization. Teams of Duke students contribute directly to the research by developing these tools. The resultant graphical user interface (GUI) serve as an entry point for experimental biologists into computational biology in archaea, reducing the barrier for otherwise intimidating genome-scale analyses. Duke Masters in Data Science (MIDS) students and graduate students from the PI's lab co-mentor the Data+ team and provide support for these tools throughout the academic year. This vertically integrated mentorship structure provides critical training in research mentorship, team project management, and communication skills. The team-based learning approach encourages recruitment and retention of underrepresented groups in STEM. The overarching goal of this project is to understand how extreme environments select for regulatory network architecture and function. Transcription regulatory networks (TRNs) vary gene expression dynamically in response to stress. Such expression adapts physiology to improve fitness in the short term and leads to phenotypic diversity over evolutionary time scales. However, the selective forces causing such rewiring of gene circuits, and whether such rewiring is adaptive, remain unclear. In recent work on halophiles, hypersaline-adapted representatives of the archaeal domain of life, the PI discovered archaeal TRNs that regulate critical cellular decisions such as nutrient use and damage repair. Halophiles provide a unique model for investigating the evolution of TRNs given their experimental tractability in the lab and adaptability during continual exposure to multiple extreme conditions in the natural environment. Previous research compared the architecture and dynamic function of TRNs across related species of halophiles. More recent research has led to the hypothesis that extreme conditions select for more highly interconnected TRNs, enabling rapid physiological adjustment in response to variable environments. To test this hypothesis, the research: (a) uses an integrated experimental and computational systems biology approach pioneered in the PI's lab to map and compare small-scale TRNs across four species of halophiles; (b) jointly infers global TRNs across species using multi-task machine learning to ctract-Sompare genome-scale networks; and (c) forces TRN rewiring with in-lab evolution experiments. This approach combines genetics, genomics, quantitative phenotyping, and statistical modeling, yielding rapid and unprecedented insight into the dynamic function of archaeal regulatory networks and their impact on cell physiology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目试图了解基因电路在极端条件下是如何进化的。生活在极端环境中的微生物,称为极端微生物,是生命弹性的显著例子,它们在沸腾的温度下的温泉、饱和盐湖和曾经被认为是贫瘠的沙漠中茁壮成长。这项研究使用嗜盐菌,即生活在高盐环境中的极端嗜盐菌作为测试系统,绘制出使生存得以实现的复杂基因电路。对耐不同水平的盐和压力的嗜盐物种的电路图进行了比较,以了解极端条件如何重新连接基因电路,以及重新连接如何在面对压力时实现适应。感兴趣的高盐极端微生物是生命古生界的成员。由于古生物中构成基因回路的分子与其他生命领域的分子相似,这项研究有可能揭示整个生命树上基因回路进化的一般原理。该教育计划涉及与学生合作,为分析和可视化古代数据建立解决方案。PI和她的团队通过暑期Duke Data+计划指导本科生创建交互式网络可访问工具,用于数据分析和可视化。杜克大学的学生团队通过开发这些工具直接为研究做出了贡献。由此产生的图形用户界面(GUI)为实验生物学家进入古生物中的计算生物学提供了一个切入点,减少了原本令人生畏的基因组规模分析的障碍。杜克大学数据科学硕士(MIDS)学生和PI实验室的研究生共同指导Data+团队,并在整个学年为这些工具提供支持。这种垂直整合的导师结构提供了研究导师、团队项目管理和沟通技能方面的关键培训。以团队为基础的学习方法鼓励招募和留住STEM中任职人数不足的群体。本项目的首要目标是了解极端环境如何选择监管网络架构和功能。转录调控网络(TRN)动态地改变基因的表达以响应胁迫。这种表达使生理学在短期内改善了适应性,并导致了进化时间尺度上的表型多样性。然而,导致这种基因电路重新连接的选择性作用力,以及这种重新连接是否是适应性的,仍然不清楚。在最近对嗜盐生物的研究中,PI发现了古细菌TRN,它们调控着营养物质的使用和损伤修复等关键的细胞决策。嗜盐微生物为研究TRN的进化提供了一个独特的模型,因为它们在实验室中的实验可控性和在自然环境中持续暴露于多种极端条件下的适应性。以前的研究比较了嗜盐相关物种中TRNS的结构和动态功能。最近的研究导致了一种假设,即极端条件选择更高度相互关联的TRN,使其能够对变化的环境做出快速的生理调整。为了验证这一假设,这项研究:(A)使用PI实验室首创的集成实验和计算系统生物学方法来绘制和比较四种嗜盐生物的小规模TRN;(B)使用多任务机器学习来联合推断跨物种的全球TRN,以提取基因组规模的网络;以及(C)强制TRN与实验室内的进化实验重新连接。这种方法结合了遗传学、基因组学、定量表型和统计建模,对古生物调控网络的动态功能及其对细胞生理学的影响产生了快速和前所未有的洞察。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy Schmid其他文献

Assertiveness during condom negotiation among high risk late adolescent/emerging adult couples: The role of relational uncertainty
高风险青少年晚期/新兴成年夫妇在安全套谈判中的自信:关系不确定性的作用
  • DOI:
    10.7916/d86979jj
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Amy Schmid
  • 通讯作者:
    Amy Schmid

Amy Schmid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy Schmid', 18)}}的其他基金

Conference: 2024 Microbial Stress Response GRC and GRS: Dealing with the Unknown: Bacterial Stress Responses Across Time and Space
会议:2024年微生物应激反应GRC和GRS:应对未知:跨时间和空间的细菌应激反应
  • 批准号:
    2420525
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Conference: 2023 Archaea: Ecology, Metabolism and Molecular Biology GRC and GRS The Root and Branch of Discovery: Lessons on Life from the Archaea
会议:2023 古细菌:生态学、代谢和分子生物学 GRC 和 GRS 发现的根源和分支:古细菌的生命教训
  • 批准号:
    2324896
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Transitions: Modeling microbial community metabolic interactions under extreme conditions
转变:模拟极端条件下微生物群落代谢相互作用
  • 批准号:
    2118274
  • 财政年份:
    2021
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
CAREER: Elucidating cell cycle regulatory networks across the tree of life.
职业:阐明整个生命树的细胞周期调控网络。
  • 批准号:
    1651117
  • 财政年份:
    2017
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Modeling the function and evolution of metabolic networks across hypersaline-adapted Archaea
对适应高盐古菌的代谢网络的功能和进化进行建模
  • 批准号:
    1615685
  • 财政年份:
    2016
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Understanding Gene Regulatory Networks in Hypersaline-adapted Archaea: Toward Synthetic Biology for Industrial Applications
了解适应高盐的古细菌中的基因调控网络:面向工业应用的合成生物学
  • 批准号:
    1417750
  • 财政年份:
    2014
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Understanding Gene Regulatory Network Function During Stress Response Adaptation of an Archael Extremophile
了解古细菌极端微生物应激反应适应过程中的基因调控网络功能
  • 批准号:
    1052290
  • 财政年份:
    2011
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant

相似国自然基金

Exposing Verifiable Consequences of the Emergence of Mass
  • 批准号:
    12135007
  • 批准年份:
    2021
  • 资助金额:
    313 万元
  • 项目类别:
    重点项目
Accretion variability and its consequences: from protostars to planet-forming disks
  • 批准号:
    12173003
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
Consequences of MALT1 mutation for B cell tolerance
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Functional consequences of intergenic autoimmune disease risk variants
基因间自身免疫性疾病风险变异的功能后果
  • 批准号:
    10655161
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
Elucidating the consequences of dietary sugar consumption on the gut microbiota
阐明膳食糖消耗对肠道微生物群的影响
  • 批准号:
    10658136
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
Gene Regulation in Memory Circuits as a Consequence of Polysubstance Use
多物质使用导致的记忆电路基因调控
  • 批准号:
    10739399
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
Immunometabolic consequences of alcohol-induced mesenteric lymphatic dyshomeostasis
酒精引起的肠系膜淋巴稳态失调的免疫代谢后果
  • 批准号:
    10679999
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
Mechanisms and consequences of antigen-dependent T cell homing for adoptive immunotherapies
过继免疫疗法中抗原依赖性 T 细胞归巢的机制和后果
  • 批准号:
    10654215
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
The effects of wildfire exposure on maternal allergic asthma and consequences on neurobiology
野火暴露对母亲过敏性哮喘的影响及其对神经生物学的影响
  • 批准号:
    10727122
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
A comprehensive investigation of Pseudomonas quorum sensing regulatory relationships and the consequences on quorum sensing inhibitors in complex communities
复杂群落中假单胞菌群体感应调控关系及其对群体感应抑制剂影响的全面研究
  • 批准号:
    10716869
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
Establishing and reversing the functional consequences of Titin truncation mutations
建立并逆转肌联蛋白截断突变的功能后果
  • 批准号:
    10510011
  • 财政年份:
    2022
  • 资助金额:
    $ 90万
  • 项目类别:
Collateral Consequences of Enabler Genotypes in Antibiotic Treatment Failure.
抗生素治疗失败中促成基因型的附带后果。
  • 批准号:
    10703351
  • 财政年份:
    2022
  • 资助金额:
    $ 90万
  • 项目类别:
Thromboinflammatory consequences of infection-induced autoimmunity
感染引起的自身免疫的血栓炎症后果
  • 批准号:
    10524822
  • 财政年份:
    2022
  • 资助金额:
    $ 90万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了