EAGER: Flexible wireless joint sensing system for knee arthroplasty
EAGER:用于膝关节置换术的灵活无线关节传感系统
基本信息
- 批准号:1936255
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to develop a low power flexible wireless joint sensor system using novel two dimensional (2D) nanomaterials. The sensor can be used for total knee arthroplasty which is a surgical procedure to replace the weight-bearing surfaces of the knee joint to relieve pain and disability. Approximately 20% of total knee arthroplasty may have soft tissue imbalance or mal-tracking components resulting in stiffness or subtle instability. Currently, surgeons generally relied solely on their best judgment in determining what felt like a balanced and stable knee. Therefore, ligament balancing during knee arthroplasty is a critical procedure necessary for the longevity of the prosthesis. The smart sensor system developed in this research can help orthopedic surgeons by providing real-time information about soft tissue adjustments and implant position during the surgical procedure. Since it is not a disposable sensor, it continues to provide real-time data to monitor the performance of the artificial knee even after the surgery. This enables surgeons to diagnose potential malfunction and adjust the alignment of the artificial knee during follow-up visits. The flexible wireless joint sensor system will be developed using smart materials such as graphene and MoS2, and power-efficient wireless sensing techniques. A new design of active sensor based on 2D materials will be fabricated and characterized. The flexible 2D sensor array will be connected to the programmable power unit for sweeping electric signal to measure the difference of conductivity of each unit with pressure change. It will detect joint pressure distribution signals with high sensitivity and rapid response with low power consumption. The measured pressure distribution signal will be transmitted to the control system wirelessly, and the results will be presented on a map at real-time. The circuitry for wireless sensor system will be optimized for low power, area consumption, and accuracy. The assembled sensor unit will be tested in situ by applying it in an artificial knee model. Biocompatibility of implants will also be evaluated systematically so that the materials meet the minimal biosafety criteria as bone implants. This research project will significantly enhance undergraduate and graduate education and research training in an integrative and interdisciplinary manner in the broader areas of materials, mechanical, biomedical, and electrical engineering. This interdisciplinary project will provide great educational and research opportunities to female students and students from underrepresented groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究的目的是开发一种使用新型二维纳米材料的低功耗柔性无线关节传感器系统。该传感器可用于全膝关节置换术,这是一种取代膝关节承重面的外科手术,以减轻疼痛和残疾。约20%的全膝关节置换术可能存在软组织失衡或假体跟踪不良,导致僵硬或微妙的不稳定。目前,外科医生通常完全依靠他们的最佳判断力来确定什么感觉像是平衡和稳定的膝盖。因此,膝关节置换术中的韧带平衡是假体寿命的关键步骤。本研究开发的智能传感器系统可以在手术过程中提供软组织调整和种植位置的实时信息,从而帮助骨科医生。由于它不是一次性传感器,即使在手术后,它也会继续提供实时数据来监控人工膝关节的性能。这使外科医生能够诊断潜在的故障,并在后续访问期间调整人工膝关节的对准。灵活的无线联合传感器系统将使用石墨烯和MoS2等智能材料以及高能效的无线传感技术来开发。设计了一种新型的基于二维材料的有源传感器,并对其进行了表征。柔性二维传感器阵列将连接到可编程电源单元进行电信号扫描,以测量每个单元的电导率随压力变化的差异。它将以低功耗、高灵敏度和快速响应的方式检测节理压力分布信号。测量到的压力分布信号将无线传输到控制系统,并将结果实时呈现在地图上。无线传感器系统的电路将进行优化,以实现低功耗、面积消耗和精度。组装好的传感器单元将在人工膝关节模型上进行现场测试。植入物的生物兼容性也将被系统地评估,以使材料满足作为骨植入物的最低生物安全性标准。这一研究项目将在材料、机械、生物医学和电气工程等更广泛的领域以综合和跨学科的方式显著加强本科生和研究生教育和研究培训。这一跨学科项目将为女性学生和来自代表性不足群体的学生提供巨大的教育和研究机会。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wonbong Choi其他文献
A deep learning and finite element approach for exploration of inverse structure–property designs of lightweight hybrid composites
一种用于探索轻质混杂复合材料逆结构-性能设计的深度学习和有限元方法
- DOI:
10.1016/j.compstruct.2025.119179 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:7.100
- 作者:
Sanjida Ferdousi;Zoriana Demchuk;Wonbong Choi;Rigoberto C. Advincula;Yijie Jiang - 通讯作者:
Yijie Jiang
Graphene synthesis and application for solar cells
- DOI:
10.1557/jmr.2013.297 - 发表时间:
2014-02-01 - 期刊:
- 影响因子:2.900
- 作者:
Santanu Das;Pitchaimuthu Sudhagar;Yong Soo Kang;Wonbong Choi - 通讯作者:
Wonbong Choi
Protein-carbon nanotube sensors: single platform integrated micro clinical lab for monitoring blood analytes.
蛋白碳纳米管传感器:用于监测血液分析物的单一平台集成微型临床实验室。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
S. Viswanathan;Pingzuo Li;Pingzuo Li;Wonbong Choi;S. Filipek;T. Balasubramaniam;Venkatesan Renugopalakrishnan - 通讯作者:
Venkatesan Renugopalakrishnan
A heterointerface effect of Mosub1-x/subWsubx/subSsub2/sub-based artificial synapse for neuromorphic computing
基于 Mosub1-x/subWsubx/subSsub2/sub 的人工突触在神经形态计算中的异质界面效应
- DOI:
10.1016/j.cej.2025.161622 - 发表时间:
2025-04-15 - 期刊:
- 影响因子:13.200
- 作者:
Jinwoo Hwang;Junho Sung;Eunho Lee;Wonbong Choi - 通讯作者:
Wonbong Choi
Synthesis of large scale MoS2 for electronics and energy applications
- DOI:
10.1557/jmr.2016.100 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:2.900
- 作者:
Nitin Choudhary;Mumukshu D. Patel;Juhong Park;Ben Sirota;Wonbong Choi - 通讯作者:
Wonbong Choi
Wonbong Choi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wonbong Choi', 18)}}的其他基金
Collaborative Research: High-Throughput Nanomanufacturing of 10 NM Feature Patterns Using Ultra-Sharp Probe Arrays
合作研究:使用超锐探针阵列高通量纳米制造 10 NM 特征图案
- 批准号:
0900583 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
US-Korea Workshop on Nano and Micro Integrative, Hybrid and Complex Systems will be held in Kores on October 25-27, 2005.
美韩纳米和微集成、混合和复杂系统研讨会将于2005年10月25日至27日在科雷斯举行。
- 批准号:
0549230 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
Wearable, Graphene-based Flexible Sensors for Chronic Monitoring of Venous Thromboembolism for High-Risk Patients
用于长期监测高危患者静脉血栓栓塞的可穿戴石墨烯柔性传感器
- 批准号:
10505269 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
NCS-FO: Fully Wireless Flexible Electrical-Acoustic Implant for High-Resolution Neural Stimulation and Recording at Large Scale
NCS-FO:全无线柔性电声植入物,用于大规模高分辨率神经刺激和记录
- 批准号:
2219811 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Flexible and Wireless Bioelectronics for Continuous Monitoring of Intracranial Pressure
用于连续监测颅内压的灵活无线生物电子学
- 批准号:
10427358 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Neuro-CROWN:Optimized Ultra-Flexible CMOS Electrode Arrays for 3D, Low-Noise Neural Interfaces
Neuro-CROWN:用于 3D、低噪声神经接口的优化超灵活 CMOS 电极阵列
- 批准号:
10705770 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Neuro-CROWN:Optimized Ultra-Flexible CMOS Electrode Arrays for 3D, Low-Noise Neural Interfaces
Neuro-CROWN:用于 3D、低噪声神经接口的优化超灵活 CMOS 电极阵列
- 批准号:
10490983 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Evaluation of micro-epidermal actuators on flexible substrate for noninvasive, pediatric-friendly conductive hearing aid
用于无创、儿科友好型传导助听器的柔性基底上的微表皮执行器的评估
- 批准号:
10204326 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Flexible and Wireless Bioelectronics for Continuous Monitoring of Intracranial Pressure
用于连续监测颅内压的灵活无线生物电子学
- 批准号:
10192303 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
An experimental platform to investigate the neural mechanisms underlying flexible decision-making
研究灵活决策神经机制的实验平台
- 批准号:
10366077 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Flexible and Wireless Bioelectronics for Continuous Monitoring of Intracranial Pressure
用于连续监测颅内压的灵活无线生物电子学
- 批准号:
10679176 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Neuro-CROWN:Optimized Ultra-Flexible CMOS Electrode Arrays for 3D, Low-Noise Neural Interfaces
Neuro-CROWN:用于 3D、低噪声神经接口的优化超灵活 CMOS 电极阵列
- 批准号:
10914715 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别: