CAREER: New Approaches to Mathematical Wave Turbulence
职业:数学波湍流的新方法
基本信息
- 批准号:1936640
- 负责人:
- 金额:$ 37.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nonlinear dispersive equations model physical phenomena arising in quantum mechanics, plasma physics, nonlinear optics, oceanography, all the way to general relativity. The purpose of this project is to improve the mathematical and scientific understanding of those equations via A) concrete research projects aimed at studying the long-time behavior of solutions to such equations, and B) an educational component aimed at introducing such problems to a new and diverse generation of mathematicians. The main focus is on the study of the so-called "non-equilibrium behavior" of nonlinear dispersive equations. Such a behavior is exhibited in many physically important phenomena, like turbulence in ocean waves or in the transmission of optical signals, to mention only a couple. While this turbulence is easy to observe and has very strong manifestations in nature, its scientific understanding is rather poor and the mathematical justification of the involved phenomena based on the model equations is rather difficult and is mostly still open. This project is aimed at rigorously proving turbulence phenomenon for certain nonlinear dispersive models.The most important feature of the long-time behavior of nonlinear dispersive partial differential equations (PDE) on compact domains is out-of-equilibrium behavior or long-time instability. This means that solutions do not exhibit long-time stability near equilibriums solutions or configurations. Such questions can be addressed from a dynamical systems perspective and from a statistical physics perspective, in what is often called in the physics literature as "wave turbulence theory". The proposed projects address this broad problematic from both perspectives. In terms of dynamics, the aim is to construct solutions exhibiting the so-called "energy cascade" phenomenon, in which the energy of a dispersive system moves its concentration zone between characteristically different length scales. On the statistical physics perspective, projects aimed at justifying the fundamental equations of wave turbulence are proposed. These are effective equations for the dynamics that are derived in the physics literature from heuristic considerations, and have very important implications on the long-time behavior of dispersive PDE, provided they are rigorously justified. The project also includes an educational component aimed at raising the interest of a younger generation of researchers in those fundamental problems through workshops, seminars, REU projects, etc.
非线性色散方程模型的物理现象出现在量子力学,等离子体物理学,非线性光学,海洋学,一直到广义相对论。该项目的目的是通过以下方式提高对这些方程的数学和科学理解:A)旨在研究此类方程的长期解的具体研究项目,以及B)旨在向新一代和多样化的数学家介绍此类问题的教育组件。主要集中在研究所谓的非线性色散方程的“非平衡行为”。这种行为表现在许多重要的物理现象中,例如海浪中的湍流或光信号的传输,仅举两例。虽然这种湍流很容易观察到,并且在自然界中有很强的表现,但其科学理解相当差,并且基于模型方程的所涉及现象的数学证明相当困难,并且大多数仍然是开放的。本项目旨在严格证明某些非线性色散模型的湍流现象,紧致区域上的非线性色散偏微分方程(PDE)的长时间行为的最重要特征是失平衡行为或长时间不稳定性。这意味着溶液在平衡点附近不表现出长时间的稳定性。这些问题可以从动力学系统的角度和统计物理学的角度来解决,在物理学文献中通常称为“波湍流理论”。拟议的项目从这两个角度解决这一广泛的问题。在动力学方面,目的是构建表现出所谓的“能量级联”现象的解决方案,其中分散系统的能量在特征性不同的长度尺度之间移动其浓度区。从统计物理的角度,提出了一些旨在证明波动湍流基本方程的方案。这些都是有效的方程的动力学推导出的物理文献中的启发式考虑,并有非常重要的影响,色散偏微分方程的长期行为,只要他们是严格合理的。该项目还包括一个教育部分,旨在通过讲习班、研讨会、REU项目等,提高年轻一代研究人员对这些基本问题的兴趣。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strong nonlinear instability and growth of Sobolev norms near quasiperiodic finite gap tori for the 2D cubic NLS equation
- DOI:10.4171/jems/1200
- 发表时间:2018-10
- 期刊:
- 影响因子:2.6
- 作者:M. Guardia;Z. Hani;E. Haus;A. Maspero;M. Procesi
- 通讯作者:M. Guardia;Z. Hani;E. Haus;A. Maspero;M. Procesi
On the kinetic wave turbulence description for NLS
NLS的动波湍流描述
- DOI:10.1090/qam/1554
- 发表时间:2020
- 期刊:
- 影响因子:0.8
- 作者:Buckmaster, T.;Germain, P.;Hani, Z.;Shatah, J.
- 通讯作者:Shatah, J.
A note on growth of Sobolev norms near quasiperiodic finite-gap tori for the 2D cubic NLS equation
- DOI:10.4171/rlm/873
- 发表时间:2019-01-01
- 期刊:
- 影响因子:0.5
- 作者:Guardia, Marcel;Hani, Zaher;Procesi, Michela
- 通讯作者:Procesi, Michela
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zaher Hani其他文献
Zaher Hani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zaher Hani', 18)}}的其他基金
Hilbert's Sixth Problem: From Particles to Waves
希尔伯特第六个问题:从粒子到波
- 批准号:
2350242 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Continuing Grant
Wave Turbulence and Long-Time Dynamics of Dispersive Partial Differential Equations
波湍流和色散偏微分方程的长期动力学
- 批准号:
1852749 - 财政年份:2018
- 资助金额:
$ 37.35万 - 项目类别:
Continuing Grant
CAREER: New Approaches to Mathematical Wave Turbulence
职业:数学波湍流的新方法
- 批准号:
1654692 - 财政年份:2017
- 资助金额:
$ 37.35万 - 项目类别:
Continuing Grant
Wave Turbulence and Long-Time Dynamics of Dispersive Partial Differential Equations
波湍流和色散偏微分方程的长期动力学
- 批准号:
1600561 - 财政年份:2016
- 资助金额:
$ 37.35万 - 项目类别:
Continuing Grant
Asymptotic Regimes of Nonlinear Dispersive Equations
非线性色散方程的渐近域
- 批准号:
1543750 - 财政年份:2014
- 资助金额:
$ 37.35万 - 项目类别:
Standard Grant
Asymptotic Regimes of Nonlinear Dispersive Equations
非线性色散方程的渐近域
- 批准号:
1301647 - 财政年份:2013
- 资助金额:
$ 37.35万 - 项目类别:
Standard Grant
相似海外基金
CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
- 批准号:
2337943 - 财政年份:2024
- 资助金额:
$ 37.35万 - 项目类别:
Continuing Grant
CAREER: New Statistical Approaches for Studying Evolutionary Processes: Inference, Attribution and Computation
职业:研究进化过程的新统计方法:推理、归因和计算
- 批准号:
2143242 - 财政年份:2022
- 资助金额:
$ 37.35万 - 项目类别:
Continuing Grant
CAREER: Hybrid Approaches to Quantum Cryptography: New Methods and Protocols
职业:量子密码学的混合方法:新方法和协议
- 批准号:
2143644 - 财政年份:2022
- 资助金额:
$ 37.35万 - 项目类别:
Continuing Grant
CAREER: Advancing Fair Data Mining via New Robust and Explainable Algorithms and Human-Centered Approaches
职业:通过新的稳健且可解释的算法和以人为本的方法推进公平数据挖掘
- 批准号:
2146091 - 财政年份:2022
- 资助金额:
$ 37.35万 - 项目类别:
Standard Grant
CAREER: New Approaches to Managing Lifecycles of Digital Knowledge Commons
职业:管理数字知识共享生命周期的新方法
- 批准号:
2045055 - 财政年份:2021
- 资助金额:
$ 37.35万 - 项目类别:
Standard Grant
CAREER: A New Science of Skeletal and Physiological Systems: using integrated approaches to elucidate mineralized tissue properties and behavior
职业:骨骼和生理系统的新科学:使用综合方法来阐明矿化组织的特性和行为
- 批准号:
2044870 - 财政年份:2021
- 资助金额:
$ 37.35万 - 项目类别:
Continuing Grant
CAREER: New Synthetic Approaches to Engineering Topology: from Quantum Many-Body Rydberg Atom Arrays to Classical Mechanical Networks
职业:工程拓扑的新综合方法:从量子多体里德伯原子阵列到经典机械网络
- 批准号:
1945031 - 财政年份:2020
- 资助金额:
$ 37.35万 - 项目类别:
Continuing Grant
CAREER: New control-theoretic approaches for cyber-physical privacy
职业:网络物理隐私的新控制理论方法
- 批准号:
1846706 - 财政年份:2019
- 资助金额:
$ 37.35万 - 项目类别:
Continuing Grant
CAREER: Beyond Worst-Case Analysis: New Approaches in Approximation Algorithms and Machine Learning
职业:超越最坏情况分析:近似算法和机器学习的新方法
- 批准号:
1652491 - 财政年份:2017
- 资助金额:
$ 37.35万 - 项目类别:
Continuing Grant
CAREER: New Approaches to Mathematical Wave Turbulence
职业:数学波湍流的新方法
- 批准号:
1654692 - 财政年份:2017
- 资助金额:
$ 37.35万 - 项目类别:
Continuing Grant














{{item.name}}会员




