Wave Turbulence and Long-Time Dynamics of Dispersive Partial Differential Equations

波湍流和色散偏微分方程的长期动力学

基本信息

项目摘要

The great American physicist Richard Feynman described turbulence as the "the most important unsolved problem of classical physics." Here, he was referring to hydrodynamic turbulence, which is the phenomenon one observes on numerous occasions in daily life, particularly when one travels through fluids either in watercraft on the ocean or in airplanes in the atmosphere. Despite its intuitive manifestations, the scientific understanding of turbulence is far from satisfactory. A related phenomenon is "wave turbulence," which pertains to similar problems but for different physical systems involving wave interactions (e.g.,ocean or plasma waves). The aim of this project is to gain a better understanding of certain phenomena pertaining to wave turbulence from a rigorous mathematical viewpoint and thereby to take the first steps towards putting the theory on solid mathematical foundations.The project addresses two different regimes of long-time behavior for nonlinear dispersive and wave partial differential equations. The first regime can be characterized by "out-of-equilibrium dynamics," in which solutions do not exhibit long-time stability around equilibrium configurations. This is the typical behavior of nonlinear dispersive equations posed on compact domains, where dispersive effects do not translate to decay, and is the natural setting of wave turbulence theory. The other regime of long-time behavior concerns dispersive partial differential equations posed on Euclidean space, for which one can hope to have stable equilibrium points for the dynamics (stationary solutions). The "asymptotic stability" of trivial equilibria (zero solutions) is mostly well understood by now, but that of nontrivial stationary solutions is far from settled. The project suggests several avenues of research to improve our understanding in the two aforementioned directions.
伟大的美国物理学家理查德·费曼(Richard Feynman)将湍流描述为“经典物理学中最重要的未解决的问题”。“在这里,他指的是流体动力学湍流,这是人们在日常生活中观察到的许多情况下的现象,特别是当人们在海洋上的船只或大气中的飞机中穿过流体时。尽管它的直观表现,湍流的科学理解是远远不能令人满意的。一个相关的现象是“波湍流”,它涉及类似的问题,但涉及不同的物理系统,包括波的相互作用(例如,海洋或等离子体波)。该项目的目的是从严格的数学观点更好地理解与波动湍流有关的某些现象,从而为将理论建立在坚实的数学基础上迈出第一步。该项目解决了非线性色散和波动偏微分方程的两种不同的长期行为。第一个制度的特点是“平衡外动力学”,其中解决方案不表现出长期的稳定性周围的平衡配置。这是在紧致域上提出的非线性色散方程的典型行为,其中色散效应不会转化为衰减,并且是波动湍流理论的自然设置。另一个长期行为的机制涉及欧几里得空间上的色散偏微分方程,人们可以希望它有稳定的动力学平衡点(稳态解)。平凡平衡点(零解)的“渐近稳定性”现在大多已经得到了很好的理解,但非平凡定态解的“渐近稳定性”还远没有得到解决。该项目提出了几种研究途径,以提高我们对上述两个方向的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zaher Hani其他文献

Zaher Hani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zaher Hani', 18)}}的其他基金

Hilbert's Sixth Problem: From Particles to Waves
希尔伯特第六个问题:从粒子到波
  • 批准号:
    2350242
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CAREER: New Approaches to Mathematical Wave Turbulence
职业:数学波湍流的新方法
  • 批准号:
    1936640
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CAREER: New Approaches to Mathematical Wave Turbulence
职业:数学波湍流的新方法
  • 批准号:
    1654692
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Wave Turbulence and Long-Time Dynamics of Dispersive Partial Differential Equations
波湍流和色散偏微分方程的长期动力学
  • 批准号:
    1600561
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Asymptotic Regimes of Nonlinear Dispersive Equations
非线性色散方程的渐近域
  • 批准号:
    1543750
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Asymptotic Regimes of Nonlinear Dispersive Equations
非线性色散方程的渐近域
  • 批准号:
    1301647
  • 财政年份:
    2013
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似海外基金

Turbulence in the Long-lived, Very Stable Atmospheric Boundary Layer
长期且非常稳定的大气边界层中的湍流
  • 批准号:
    2203610
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Wave Turbulence and Long-Time Dynamics of Dispersive Partial Differential Equations
波湍流和色散偏微分方程的长期动力学
  • 批准号:
    1600561
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Taming turbulence with long-chain polymers
用长链聚合物抑制湍流
  • 批准号:
    FT120100409
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    ARC Future Fellowships
A self-consistent turbulence model for the long-term solar-activity cycle
长期太阳活动周期的自洽湍流模型
  • 批准号:
    24540228
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Controlled Experiment on Dynamics of Vortex, Turbulence and Structure Formation in Long-range Force System Using Non-neutral Plasmas
非中性等离子体远程力系统中涡流、湍流和结构形成动力学的受控实验
  • 批准号:
    19340175
  • 财政年份:
    2007
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Type, timing, & turbulence of poverty-related risk: Long-term evidence from CSRP
类型、时间、
  • 批准号:
    9207778
  • 财政年份:
    2003
  • 资助金额:
    $ 5万
  • 项目类别:
Type, timing, & turbulence of poverty-related risk: Long-term evidence from CSRP
类型、时间、
  • 批准号:
    8816705
  • 财政年份:
    2003
  • 资助金额:
    $ 5万
  • 项目类别:
Type, timing, & turbulence of poverty-related risk: Long-term evidence from CSRP
类型、时间、
  • 批准号:
    7737924
  • 财政年份:
    2003
  • 资助金额:
    $ 5万
  • 项目类别:
Long Range Transport Events in Plasma Turbulence and Comparison with Complex Dynamics Theory
等离子体湍流中的长程输运事件及其与复杂动力学理论的比较
  • 批准号:
    0078372
  • 财政年份:
    2000
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
A study on the effects of turbulence scale on flutter of long span bridges
湍流尺度对大跨桥梁颤振的影响研究
  • 批准号:
    01550367
  • 财政年份:
    1989
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了