Pyroelectrochemical Cell: Enabling Intelligent Self-Powered Systems via Direct Conversion of Thermal Energy to Stored Electrochemical Energy

热电化学电池:通过将热能直接转换为储存的电化学能,实现智能自供电系统

基本信息

  • 批准号:
    1936636
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Power availability remains one of the central limiting factors for the implementation of wireless sensors in many applications. For example, smart precision agriculture could increase crop yields while simultaneously reducing fresh water resources and maintaining soil health through the use of self-powered, wireless soil and moisture sensors. Wearable health sensors that are thin, flexible, and have 24/7 operation capability can provide early warnings for a wide variety of conditions such as cardiac arrhythmia and can provide real-time information for conditions such as asthma. However, such applications are often limited by the need to regularly re-charge or replace batteries. Thus, the ability to harvest enough energy directly from the environment to power such sensor systems, making them completely energy independent, could enable many applications with wide ranging societal benefits. This project will develop new technologies that can harvest power from ambient thermal energy, specifically small changes in temperature that occur daily all around us, and directly store that energy in a battery-like structure on the wireless sensor for later use. This technology could have wide-ranging applications enabling many smart environments with direct benefit to society.The objective of this research is to explore a new approach for the direct conversion of thermal energy to stored electrochemical energy using a novel device called a "pyroelectrochemical cell" (PEC). The PEC uses a pyroelectric material (porous polyvinylidene fluoride, PVDF) as the separator of an electrochemical cell. When the PEC is heated (or cooled), the polarization of the pyroelectric separator decreases (or increases), producing a potential gradient that induces ion migration to charge the cell. The inclusion of shape memory alloy (SMA) onto the surface of the pyroelectric separator further enhances PEC charging by integrating a stress-mediated ion migration that complements the pyroelectric ion migration. To improve the energy independence of electronic devices, there is great interest in powering devices from wasted environmental energy using energy harvesting technologies, however many self-powered devices that utilize energy harvesting still require an energy storage mechanism due to intermittent energy availability. The PEC addresses this challenge by integrating thermal energy harvesting and electrochemical energy storage in a single device, eliminating the need for auxiliary device components. The goal of this work is to fully explore and mathematically model this new technology such that it can be used to support self-powered sensing operation while minimizing device size, weight, and number of components. This goal will be achieved through a combination of experimental and simulation-based tasks that seek to understand the fundamental mechanisms of ion and electron transport within the cell, explore the efficiency limit of the thermal-to-electrochemical energy conversion (both with and without inclusion of SMA), and establish design principles for integrating PEC devices in self-powered systems. The new technology and design principles will be demonstrated through the application of an optimally designed PEC to self-powered soil moisture sensors and tire pressure monitoring sensors. The proposed research will be the first exploration of integrated pyroelectric energy harvesting and electrochemical energy storage within a single device. The research will address fundamental questions related to ion and electron transport within the PEC (questions that remain unexplored in previous studies of integrated piezoelectric energy harvesting and electrochemical energy storage) and lead to new understanding of the coupled thermo-mechanical-electrochemical interactions that occur to make the PEC work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
功率可用性仍然是在许多应用中实施无线传感器的中心限制因素之一。例如,智能精确农业可以增加农作物的产量,同时减少淡水资源,并通过使用自动的无线土壤和水分传感器来维持土壤健康。可穿戴的健康传感器薄,灵活并且具有24/7的操作能力可以为各种疾病(例如心律不齐)提供早期警告,并可以为诸如哮喘等疾病提供实时信息。但是,这种应用通常受到定期重新充电或更换电池的需要的限制。因此,能够直接从环境中收获足够的能量来为这样的传感器系统提供动力,使它们完全独立,这可以使许多具有广泛社会利益的应用程序。该项目将开发新技术,这些技术可以从环境热能中收获动力,特别是我们周围每天发生的温度变化,并将该能量直接存储在无线传感器上的电池状结构中,以供以后使用。这项技术可能具有广泛的应用程序,使许多智能环境能够直接受益于社会。这项研究的目的是探索一种新的方法,即使用称为“ PyroelectroctroChemical Cell”的新设备将热能直接转换为存储的电化学能源(PEC)。 PEC使用甲状化材料(多孔聚乙烯氟,PVDF)作为电化学细胞的分离器。当PEC加热(或冷却)时,高电分离器的极化会降低(或增加),从而产生一种诱导离子迁移给细胞充电的潜在梯度。将形状记忆合金(SMA)纳入pyroelectric分离器的表面,进一步增强了PEC充电,通过整合应力介导的离子迁移,以补充pyroelectric Ion迁移。为了提高电子设备的能源独立性,使用能量收集技术从浪费的环境能源为设备供电的设备引起了极大的兴趣,但是许多利用能源收集的自动设备仍然需要间歇性能源可用性引起的能量存储机制。 PEC通过在单个设备中整合热能收集和电化学能量存储来解决这一挑战,从而消除了对辅助设备组件的需求。这项工作的目的是对这项新技术进行全面探索和数学建模,以便可以用来支持自动传感操作,同时最大程度地减少设备尺寸,重量和组件数量。该目标将通过基于实验和模拟的任务的组合来实现,这些任务试图了解细胞内的离子和电子传输的基本机制,探索热能化学能量转换的效率极限(无论是有没有纳入SMA),并建立在自我功能系统中集成PEC设备的设计原理。新技术和设计原理将通过将最佳设计的PEC应用于自动的土壤水分传感器和轮胎压力监测传感器来证明。拟议的研究将是单个设备中综合的pyroelectric收获和电化学能源存储的首次探索。这项研究将解决与PEC内与离子和电子传输有关的基本问题(在先前对综合的压电能量收获和电化学能源存储的研究中尚未探索的问题),并使对耦合的热机电 - 机电 - 机电 - 电子化学互动的新理解,从而使PEC的作用。智力优点和更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Communication—Design of Heated Cells for In Situ Absorption and Reflectance UV–Vis Spectroelectrochemistry
用于原位吸收和反射紫外可见光谱电化学的加热池的通信设计
  • DOI:
    10.1149/1945-7111/ac5fec
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Khan, Fariha;Kowalchik, Tim;Nelson, Tanner;Atnip, Aaron;Johnson, Johnathan;Young, Jeremiah;Siri, Connor;Dallon, Adam;Warren, Roseanne
  • 通讯作者:
    Warren, Roseanne
PYROELECTROCHEMICAL CELL--A DIRECT THERMAL TO ELECTROCHEMICAL ENERGY CONVERSION DEVICE
热电化学电池--一种直接热能到电化学能量转换装置
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Khan, Fariha T.
  • 通讯作者:
    Khan, Fariha T.
Stretching-induced phase transitions in barium titanate-poly(vinylidene fluoride) flexible composite piezoelectric films
  • DOI:
    10.1016/j.scriptamat.2020.10.036
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Khan, Fariha;Kowalchik, Tim;Warren, Roseanne
  • 通讯作者:
    Warren, Roseanne
Direct Thermal-to-Electrochemical Energy Conversion Via A Pyroelectrochemical Cell
通过热电化学电池将热能直接转换为电化学能
Effect of Pore Structure on the Piezoelectric Properties of Barium Titanate-Polyvinylidene Fluoride Composite Films
  • DOI:
    10.1016/j.nanoen.2023.108276
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    Tim Kowalchik;Fariha Khan;K. Lê;Paige Leland;S. Roundy;Roseanne Warren
  • 通讯作者:
    Tim Kowalchik;Fariha Khan;K. Lê;Paige Leland;S. Roundy;Roseanne Warren
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roseanne Warren其他文献

Rapid assembly of multilayer microfluidic structures
多层微流体结构的快速组装

Roseanne Warren的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roseanne Warren', 18)}}的其他基金

Collaborative Research: Harnessing Mechanics for the Design of All-Solid-State Lithium Batteries
合作研究:利用力学设计全固态锂电池
  • 批准号:
    2152562
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Roll-to-Roll Fabrication of Porous Materials Using Nanobubble Templates
职业:使用纳米气泡模板卷对卷制造多孔材料
  • 批准号:
    1943907
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Liquid Phase Atomic Layer Deposition of Thin Films on Nanoparticles Using Three-Dimensionally Printed Microfluidics
合作研究:利用三维印刷微流控在纳米粒子上进行薄膜的液相原子层沉积
  • 批准号:
    1761273
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

Galectin-3调控PD-L1在原发性肝细胞癌免疫治疗和预后中的作用及机制
  • 批准号:
    82304216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
神经母细胞瘤EDF1促进神经节苷脂贮积诱导CD8+T细胞耗竭的机制研究
  • 批准号:
    82373421
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
肝细胞CREG1抑制其富含miR-34的外泌体分泌并减少巨噬细胞的活化,进而延缓肝纤维化的进展
  • 批准号:
    82300713
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
  • 批准号:
    82304478
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Enabling precision medicine in type 1 diabetes (T1D): leveraging integrative multiomics to understand T1D endotypes for therapy
实现 1 型糖尿病 (T1D) 的精准医疗:利用综合多组学了解 T1D 内型以进行治疗
  • 批准号:
    491380
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Fellowship Programs
Development of bile cell block specimens for enabling comprehensive genome profiling and therapeutic medicine discovery of bile tract cancer
开发胆细胞块样本,以实现胆道癌的全面基因组分析和治疗药物发现
  • 批准号:
    23K14646
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
BEASTS-Novel Biomimetic Liver Platform for Enabling ALD Researchers
BEASTS-为 ALD 研究人员提供支持的新型仿生肝脏平台
  • 批准号:
    10697452
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
  • 批准号:
    10722452
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Harmony AI: Natural Language Processing Enabling Advanced Biomanufacturing
Harmony AI:自然语言处理实现先进生物制造
  • 批准号:
    10761082
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了