Convergence Accelerator Phase I (RAISE): Safe Skill-Aligned On-The-Job Training with Autonomous Systems
融合加速器第一阶段 (RAISE):利用自主系统进行安全的技能协调在职培训
基本信息
- 批准号:1936997
- 负责人:
- 金额:$ 99.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The NSF Convergence Accelerator supports team-based, multidisciplinary efforts that address challenges of national importance and show potential for deliverables in the near future. The broader impact/potential benefit of this Convergence Accelerator Phase I project stems from empowering the global competitiveness of our future workforce. Although staying competitive requires the productivity of US manufacturing to increase with the utilization of artificial intelligence (AI) and autonomous robotics, advanced robotic systems currently require a workforce with, at the least, 4-year degrees in engineering, computer science or AI. The problem is amplified by the fact that current robotics technologies do not inherently support adaptability, safety and explainability. This project will address these issues by creating autonomous on-the-job training platforms that use safe, self-explaining, adaptive robots. In order to achieve these objectives, our team employs a convergent approach drawing upon ideas and tools from research on intelligent tutoring systems (ITS), AI, robotics, manufacturing processes, human systems engineering, and cognitive science. The project's team also includes experts on resolving legal and socio-ethical challenges of bringing advanced technology to existing social infrastructure. This project synthesizes these diverse approaches in coordination with multiple industrial partners to enable an autonomous on-the-job training platform that would empower our national workforce for working with autonomous systems. This Convergence Accelerator Phase I project aims to initiate the invention, development and evaluation of intelligent training systems and self-explaining autonomous systems for providing safe on-the-job training for work with autonomous systems. Although autonomous systems have immense potential for empowering a highly productive workforce, this potential cannot be realized with the current state of the art. Training for work with today's autonomous systems presents unique challenges not addressed by current training paradigms, which are designed for operational systems characterized by fixed functionality and behavior. In contrast, AI systems will, by definition, change from day to day in their functionality and behavior. This interdisciplinary project will utilize safe and taskable self-explaining autonomous systems to develop a new class of intelligent tutoring systems that provide on-the-job training for work with autonomous systems. In the process, it will also advance methods for creating self-explaining autonomous systems, for the automated synthesis of task-specific robot behavior that is safe and compliant with workplace regulations, and for the evaluation of collaborative human-autonomy teamwork. In addition, it will advance research in these areas through the development of reproducible testbeds in consultation with industry experts in the domain of collaborative human-robot advanced manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持以团队为基础的多学科努力,以应对国家重要性的挑战,并在不久的将来展示可交付成果的潜力。 这个融合加速器第一阶段项目的更广泛的影响/潜在利益源于增强我们未来员工的全球竞争力。虽然保持竞争力需要美国制造业的生产力随着人工智能(AI)和自主机器人技术的利用而提高,但先进的机器人系统目前需要至少拥有4年工程,计算机科学或AI学位的劳动力。当前的机器人技术本质上并不支持适应性、安全性和可解释性,这一事实加剧了这个问题。该项目将通过创建使用安全、自我解释、自适应机器人的自主在职培训平台来解决这些问题。 为了实现这些目标,我们的团队采用了一种融合的方法,借鉴了智能教学系统(ITS)、人工智能、机器人、制造工艺、人类系统工程和认知科学研究的思想和工具。该项目的团队还包括解决将先进技术引入现有社会基础设施的法律的和社会伦理挑战的专家。 该项目综合了这些不同的方法,与多个工业合作伙伴协调,以实现一个自主的在职培训平台,使我们的国家劳动力能够使用自主系统。该融合加速器第一阶段项目旨在启动智能培训系统和自我解释自主系统的发明、开发和评估,为使用自主系统的工作提供安全的在职培训。虽然自主系统具有巨大的潜力,使一个高生产力的劳动力,这种潜力无法实现与当前的艺术状态。培训与今天的自主系统的工作提出了独特的挑战,没有解决目前的培训模式,这是专为操作系统的特点是固定的功能和行为。相比之下,根据定义,人工智能系统的功能和行为每天都会发生变化。这个跨学科项目将利用安全和可分配任务的自我解释自主系统来开发一类新的智能辅导系统,为使用自主系统提供在职培训。在此过程中,它还将推进创建自我解释的自主系统的方法,用于安全且符合工作场所法规的特定任务机器人行为的自动合成,以及用于评估协作的人类自主团队合作。此外,该基金会还将通过与人机协作先进制造领域的行业专家协商,开发可重复的试验台,推进这些领域的研究。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
RADAR: automated task planning for proactive decision support
- DOI:10.1080/07370024.2020.1726751
- 发表时间:2020-03-19
- 期刊:
- 影响因子:5.3
- 作者:Grover, Sachin;Sengupta, Sailik;Kambhampati, Subbarao
- 通讯作者:Kambhampati, Subbarao
TLdR: Policy Summarization for Factored SSP Problems Using Temporal Abstractions
TLdR:使用时间抽象对因子式 SSP 问题进行策略总结
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Sarath Sreedharan, Siddharth Srivastava
- 通讯作者:Sarath Sreedharan, Siddharth Srivastava
Unifying Principles and Metrics for Safe and Assistive AI
- DOI:10.1609/aaai.v35i17.17769
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Siddharth Srivastava
- 通讯作者:Siddharth Srivastava
Risk-Bounded Control Using Stochastic Barrier Functions
使用随机屏障函数的风险有界控制
- DOI:10.1109/lcsys.2020.3043287
- 发表时间:2021
- 期刊:
- 影响因子:3
- 作者:Yaghoubi, Shakiba;Majd, Keyvan;Fainekos, Georgios;Yamaguchi, Tomoya;Prokhorov, Danil;Hoxha, Bardh
- 通讯作者:Hoxha, Bardh
Human, AI, Robot Teaming and the Future of Work: Barriers and Opportunities for Advancement
人类、人工智能、机器人团队和工作的未来:进步的障碍和机遇
- DOI:10.1177/1071181320641018
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Chiou, Erin K.;Holder, Eric;Dolgov, Igor;McDowell, Kaleb;Menthe, Lance;Roscoe, Rod D.;Zaveri, Shivam
- 通讯作者:Zaveri, Shivam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siddharth Srivastava其他文献
Metaphysics of Planning Domain Descriptions
规划领域描述的形而上学
- DOI:
10.1609/aaai.v30i1.10118 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Siddharth Srivastava;Stuart J. Russell;A. Pinto - 通讯作者:
A. Pinto
Study and analysis of Unique Health Identifiers and applicability of Aadhaar as a Unique Health Identifier
唯一健康标识符的研究分析以及 Aadhaar 作为唯一健康标识符的适用性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Abhijat Chaturvedi;A. Cheema;P. K. Srivastava;Astha Rai;Siddharth Srivastava - 通讯作者:
Siddharth Srivastava
Epistemic Exploration for Generalizable Planning and Learning in Non-Stationary Stochastic Settings
非平稳随机环境中可推广规划和学习的认知探索
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Rushang Karia;Pulkit Verma;Gaurav Vipat;Siddharth Srivastava - 通讯作者:
Siddharth Srivastava
Discovering User-Interpretable Capabilities of Black-Box Planning Agents
发现黑盒规划代理的用户可解释的功能
- DOI:
10.24963/kr.2022/36 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Pulkit Verma;Shashank Rao Marpally;Siddharth Srivastava - 通讯作者:
Siddharth Srivastava
An Anytime Hierarchical Approach for Stochastic Task and Motion Planning
随机任务和运动规划的随时分层方法
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Naman Shah;Siddharth Srivastava - 通讯作者:
Siddharth Srivastava
Siddharth Srivastava的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siddharth Srivastava', 18)}}的其他基金
CAREER: Generalizable and Reliable Behavior Synthesis in Uncertain Open-World Environments
职业:不确定开放世界环境中的可推广且可靠的行为综合
- 批准号:
1942856 - 财政年份:2020
- 资助金额:
$ 99.86万 - 项目类别:
Standard Grant
RI: Small: Sound Abstractions for Efficient and Reliable Automated Planning
RI:小型:高效可靠的自动化规划的健全抽象
- 批准号:
1909370 - 财政年份:2019
- 资助金额:
$ 99.86万 - 项目类别:
Standard Grant
Student Support for the 2019 International Conference on Automated Planning and Scheduling (ICAPS 2019)
2019 年自动规划与调度国际会议 (ICAPS 2019) 的学生支持
- 批准号:
1912888 - 财政年份:2019
- 资助金额:
$ 99.86万 - 项目类别:
Standard Grant
EAGER: Hierarchical Contrastive Explanations for Robot-Human Communication
EAGER:机器人与人类交流的分层对比解释
- 批准号:
1844325 - 财政年份:2018
- 资助金额:
$ 99.86万 - 项目类别:
Standard Grant
相似国自然基金
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
- 批准号:62002350
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Convergence Accelerator Track J Phase 2: Rapid Detection Technologies and Decision-Support Systems for Safe, Equitable Food Systems
融合加速器轨道 J 第 2 阶段:安全、公平食品系统的快速检测技术和决策支持系统
- 批准号:
2344877 - 财政年份:2023
- 资助金额:
$ 99.86万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Dairy NutriSols - Catalyzing technology adoption to promote food and nutrition security
NSF 融合加速器轨道 J 第 2 阶段:乳制品 NutriSols - 促进技术采用,促进食品和营养安全
- 批准号:
2345069 - 财政年份:2023
- 资助金额:
$ 99.86万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Cultivate IQ - Empowering Regional Food Systems
NSF 融合加速器轨道 J 第 2 阶段:培养智商 - 增强区域粮食系统能力
- 批准号:
2345176 - 财政年份:2023
- 资助金额:
$ 99.86万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: AquaSteady - Balancing Soil Moisture, A Seaweed-Based Hydrogel for Sustainable Agriculture
NSF 融合加速器轨道 J 第 2 阶段:AquaSteady - 平衡土壤湿度,一种用于可持续农业的海藻水凝胶
- 批准号:
2345052 - 财政年份:2023
- 资助金额:
$ 99.86万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: CropSmart - a digital twin for making wiser cropping decisions nationwide
NSF 融合加速器轨道 J 第 2 阶段:CropSmart - 用于在全国范围内做出更明智的种植决策的数字孪生
- 批准号:
2345039 - 财政年份:2023
- 资助金额:
$ 99.86万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track H: Phase II Smart Wearables for Expanding Workplace Access for People with Blindness and Low Vision
NSF 融合加速器轨道 H:第二阶段智能可穿戴设备,扩大失明和低视力人士的工作场所使用范围
- 批准号:
2345139 - 财政年份:2023
- 资助金额:
$ 99.86万 - 项目类别:
Cooperative Agreement
Convergence Accelerator Phase I (RAISE): Building the Federalism Data and Advanced Statistics Hub (FDASH)
融合加速器第一阶段 (RAISE):建立联邦制数据和高级统计中心 (FDASH)
- 批准号:
1937033 - 财政年份:2019
- 资助金额:
$ 99.86万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): Preparing the Future Workforce of Architecture, Engineering, and Construction for Robotic Automation Processes
融合加速器第一阶段 (RAISE):为机器人自动化流程的未来架构、工程和施工人员做好准备
- 批准号:
1937019 - 财政年份:2019
- 资助金额:
$ 99.86万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): Unlocking the Power of Data and Science to Empower American Workers
融合加速器第一阶段 (RAISE):释放数据和科学的力量,赋予美国工人权力
- 批准号:
1937061 - 财政年份:2019
- 资助金额:
$ 99.86万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): Competency Catalyst
融合加速器第一阶段 (RAISE):能力催化剂
- 批准号:
1937068 - 财政年份:2019
- 资助金额:
$ 99.86万 - 项目类别:
Standard Grant














{{item.name}}会员




