NSF Convergence Accelerator Track J Phase 2: CropSmart - a digital twin for making wiser cropping decisions nationwide

NSF 融合加速器轨道 J 第 2 阶段:CropSmart - 用于在全国范围内做出更明智的种植决策的数字孪生

基本信息

  • 批准号:
    2345039
  • 负责人:
  • 金额:
    $ 500万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-12-15 至 2026-11-30
  • 项目状态:
    未结题

项目摘要

Healthy crop production in the U.S. is critical for not only the food and nutrition security of the U.S. and the world but also the prosperity of the U.S. economy. The USDA Agricultural Innovation Agenda calls for increasing U.S. agricultural production by 40% while cutting its environmental footprint in half by 2050. Sound crop management decision-making is a key to achieving this ambitious goal. An example of such decision-making is “should I irrigate my cornfield today? If so, by how many inches of water?” Traditionally, such decisions are made by individuals based on their empirical judgment, which is often subjective and less optimal. Science-based, data-driven approaches for cropping decision-making rely on timely and accurate information on current and predicted future conditions of crop and environment to make optimal decisions. However, it remains a challenge for stakeholders to adopt the data-driven approach because they do not have full and effective access to the timely and accurate information and lack facilities or knowledge to process the information. This project will meet the challenge by offering the data-driven optimal cropping decision-making services nationwide up to field scales through developing and operating the CropSmart digital twin. The services will be accessible to users through both web portals and smartphone Apps. This project will help USDA to archive its innovation goal, enhance food and nutrition security of the U.S. and the world, and bring hundred-million-dollar economic return and huge environmental benefits to U.S. economy and society annually.CropSmart, to be built and operated by this project, is a digital replica of real-world cropping systems over the contiguous US up to 10-m spatial resolution. It will not only accurately represent the current crop and environment conditions, but also predict, with acceptable confidence levels, future conditions with hypothetical “what if” scenarios, resulting in actionable predictions. CropSmart will provide three services to users: 1) user-specific decision ready information on which the user can make data-driven decision; 2) “what if” tradeoff service which will generate consequences (e.g., yield, economic return, or environmental footprint) of different user decision options so that the user can find the optimal decision; and 3) decision advice service which will automatically generate optimal decision based on a user’s decision goal. CropSmart will be built by integrating the advanced remote sensing, crop and environmental modeling, AI/ML, agro-geoinformatics, and digital twin technologies through the multi-disciplinary convergence approach. The major project activities will include: 1) implementing CropSmart to support at least 6 types of top-priority decision-making use-cases specified by the user community; (2) deploying CropSmart operationally to cultivate its user community and show its gaming-change impacts; 3) broadening adoption, participation, and impact through a comprehensive education, extension, and outreach program; and (4) establishing a community-based CropSmart.org and implement the sustainability plan to sustain CropSmart activities after project expires and maximize the long-term project impacts. At the end of the performance period, this project will deliver the CropSmart software package, the operational CropSmart services, and a sustained community of at least 6,000 users.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国健康的作物生产不仅对美国和世界的粮食和营养安全至关重要,而且对美国经济的繁荣也至关重要。美国农业部的农业创新议程要求到2050年将美国农业产量增加40%,同时将其环境足迹减少一半。合理的作物管理决策是实现这一宏伟目标的关键。这种决策的一个例子是“我今天应该灌溉我的玉米地吗?”如果是这样,有多少英寸的水?”传统上,这些决定是由个人根据他们的经验判断做出的,这往往是主观的,不太理想的。以科学为基础、数据驱动的种植决策方法依赖于及时准确的作物和环境当前和预测未来状况的信息,以做出最佳决策。然而,利益攸关方采用数据驱动的方法仍然是一个挑战,因为他们无法充分有效地获得及时和准确的信息,缺乏处理信息的设施或知识。该项目将通过开发和运营CropSmart数字孪生模型,在全国范围内提供数据驱动的最佳种植决策服务,以应对这一挑战。用户可通过门户网站和智能手机应用程序访问这些服务。该项目将帮助美国农业部实现其创新目标,提高美国和世界的粮食和营养安全,每年为美国经济和社会带来数亿美元的经济回报和巨大的环境效益。CropSmart是一个空间分辨率高达10米的美国本土真实世界种植系统的数字复制品。它不仅能准确地反映当前的作物和环境状况,而且还能以可接受的置信水平预测未来的状况,并提出假设性的“假设”方案,从而得出可操作的预测。CropSmart将为用户提供三种服务:1)用户可以做出数据驱动决策的用户特定决策就绪信息; 2)将产生后果的“如果”权衡服务(例如,产量、经济回报或环境足迹),以便用户可以找到最佳决策;以及3)决策建议服务,其将基于用户的决策目标自动生成最佳决策。CropSmart将通过多学科融合方法集成先进的遥感,作物和环境建模,AI/ML,农业地理信息学和数字孪生技术。主要项目活动将包括:1)实施CropSmart,以支持用户社区指定的至少6种最优先决策用例; 2)在运营中部署CropSmart,以培养其用户社区并展示其游戏变革影响; 3)通过全面的教育,推广和推广计划扩大采用,参与和影响。及(4)建立一个以社区为基础的网站CropSmart.org,并实施可持续发展计划,以在项目到期后维持CropSmart活动,并最大限度地发挥项目的长期影响。在执行期结束时,该项目将交付CropSmart软件包、可操作的CropSmart服务和至少6,000名用户的持续社区。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liping Di其他文献

Estimating Crop LAI Using Spectral Feature Extraction and the Hybrid Inversion Method
  • DOI:
    https://doi.org/10.3390/rs12213534
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Liang Liang;Di Geng;Juan Yan;Siyi Qiu;Liping Di;Shuguo Wang;Lu Xu;Lijuan Wang;Jianrong Kang;Li Li
  • 通讯作者:
    Li Li
Grid computing enhances standards-compatible geospatial catalogue service
  • DOI:
    10.1016/j.cageo.2009.09.006
  • 发表时间:
    2010-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Aijun Chen;Liping Di;Yuqi Bai;Yaxing Wei;Yang Liu
  • 通讯作者:
    Yang Liu
Deriving Non-Cloud Contaminated Sentinel-2 Images with RGB and Near-Infrared Bands from Sentinel-1 Images Based on a Conditional Generative Adversarial Network
基于条件生成对抗网络从 Sentinel-1 图像中导出具有 RGB 和近红外波段的非云污染 Sentinel-2 图像
  • DOI:
    10.3390/rs13081512
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Quan Xiong;Liping Di;Quanlong Feng;Diyou Liu;Wei Liu;Xuli Zan;Lin Zhang;Zhe Liu;Xiaochuang Yao;Xiaodong Zhang
  • 通讯作者:
    Xiaodong Zhang
Comparison of two satellite-based soil moisture reconstruction algorithms: A case study in the state of Oklahoma, USA
两种基于卫星的土壤湿度重建算法的比较:以美国俄克拉荷马州为例
  • DOI:
    10.1016/j.jhydrol.2020.125406
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Yangxiaoyue Liu;Ling Yao;Wenlong Jing;Liping Di;Ji Yang;Yong Li
  • 通讯作者:
    Yong Li
Bibliometric Analysis of OGC Specifications between 1994 and 2020 Based on Web of Science (WoS)
基于Web of Science(WoS)的1994年至2020年OGC规范文献计量分析

Liping Di的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liping Di', 18)}}的其他基金

NSF Convergence Accelerator Track J: Building a digital twin for national-scale field-level crop monitoring, prediction, and decision support
NSF 融合加速器轨道 J:为国家规模的田间作物监测、预测和决策支持构建数字孪生
  • 批准号:
    2236137
  • 财政年份:
    2022
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Spatiotemporal transfer learning for enabling cross-country and cross-hemisphere in-season crop mapping
EAGER:协作研究:时空迁移学习,用于实现跨国和跨半球的当季作物绘图
  • 批准号:
    2228000
  • 财政年份:
    2022
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
EarthCube Integration: CyberWay--Integrated Capabilities of EarthCube Building Blocks for Facilitating Cyber-based Innovative Way of Interdisciplinary Geoscience Studies
EarthCube集成:Cyber​​Way——EarthCube构建模块的集成能力,促进基于网络的跨学科地球科学研究创新方式
  • 批准号:
    1740693
  • 财政年份:
    2017
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
INFEW/T2:WaterSmart: A Cyberinfrastructure-Based Integrated Agro-Geoinformatic Decision-Support Web Service System to Facilitate Informed Irrigation Decision-Making
INFEW/T2:WaterSmart:基于网络基础设施的综合农业地理信息决策支持网络服务系统,促进知情灌溉决策
  • 批准号:
    1739705
  • 财政年份:
    2017
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
EarthCube Building Blocks: CyberConnector: Bridging the Earth Observations and Earth Science Modeling for Supporting Model Validation, Verification, and Inter-comparison
EarthCube 构建模块:Cyber​​Connector:连接地球观测和地球科学建模以支持模型验证、验证和相互比较
  • 批准号:
    1440294
  • 财政年份:
    2014
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
EarthCube Domain End-User Workshop: Engaging the Atmospheric Cloud/Aerosol/Composition Community
EarthCube 域最终用户研讨会:参与大气云/气溶胶/成分社区
  • 批准号:
    1342148
  • 财政年份:
    2013
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Interoperability Testbed-Assessing a Layered Architecture for Integration of Existing Capabilities
EAGER:协作研究:互操作性测试台 - 评估用于集成现有功能的分层架构
  • 批准号:
    1239615
  • 财政年份:
    2012
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant

相似海外基金

NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
  • 批准号:
    2344357
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
  • 批准号:
    2344305
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
  • 批准号:
    2344426
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
  • 批准号:
    2344174
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
  • 批准号:
    2344228
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了