Augmented Learning for Environmental Robotics Technologies: A Data-Driven Approach for Sustainable Built Environments
环境机器人技术的增强学习:可持续建筑环境的数据驱动方法
基本信息
- 批准号:2315647
- 负责人:
- 金额:$ 39.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Augmented Learning for Environmental Robotics Technologies (ALERT) aims to serve the national interest by developing and testing an Augmented Reality (AR) learning platform for Architecture, Engineering, and Construction (AEC) students to prepare them for working with environmental data and robotics. ALERT will be designed to address the training needs of the AEC industry, which is expected to face disruptions due to robotic automation. ALERT will leverage advancements in Artificial Intelligence (AI), AR, and information technologies to create immersive, interactive, and data driven environmental robotic learning environments. It will integrate an AI-powered intelligent learning systems with AR to collect and analyze learner performance data to customize learning experiences and improve learning outcomes. ALERT will also develop a novel interdisciplinary curriculum focusing on environmental monitoring and data visualization for sustainable building design and construction. The project will address the need to prepare the AEC students to capture, analyze, and apply environmental data in order to reduce the impacts of human development and construction. It will also address the shortage of a skilled workforce in the AEC industry, focusing on the sustainability of the built environment. ALERT will provide a technology-rich learning experience, which will enhance students' competitiveness for future jobs. By developing and testing ALERT at Florida International University, one of the largest majority-minority student populations, the project will take advantage of a unique opportunity to create a curriculum tailored to diverse learners. Project results will be disseminated through various channels including webinars, press releases, publications, and presentations in a variety of disciplinary and interdisciplinary venues. The project team plans to utilize social media as a vehicle to communicate with interested students and educators. The NSF IUSE: EDU Program supports research and development projects to improve the effectiveness of STEM education for all students. Through its Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
环境机器人技术增强学习(ALERT)旨在通过为建筑,工程和建筑(AEC)学生开发和测试增强现实(AR)学习平台,为他们处理环境数据和机器人技术做好准备,从而为国家利益服务。ALERT旨在满足AEC行业的培训需求,该行业预计将面临机器人自动化带来的中断。ALERT将利用人工智能(AI)、增强现实(AR)和信息技术的进步,创建沉浸式、交互式和数据驱动的环境机器人学习环境。它将集成AI驱动的智能学习系统与AR,以收集和分析学习者的表现数据,从而定制学习体验并提高学习效果。ALERT还将开发一个新的跨学科课程,重点是可持续建筑设计和施工的环境监测和数据可视化。该项目将解决需要准备AEC学生捕捉,分析和应用环境数据,以减少人类发展和建设的影响。它还将解决AEC行业熟练劳动力短缺的问题,重点关注建筑环境的可持续性。ALERT将提供技术丰富的学习体验,这将提高学生未来就业的竞争力。通过在佛罗里达国际大学开发和测试ALERT,该项目将利用一个独特的机会,为不同的学习者量身定制课程。项目成果将通过各种渠道传播,包括网络研讨会、新闻稿、出版物以及在各种学科和跨学科场所的演示。项目团队计划利用社交媒体作为与感兴趣的学生和教育工作者沟通的工具。NSF IUSE:EDU计划支持研究和开发项目,以提高所有学生STEM教育的有效性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shahin Vassigh其他文献
Biomimetic self-shading walls via 3D-printing for reduced heat gain: Multiscale learning using graph neural networks to predict solar radiation absorption
通过3D打印实现仿生自遮阳墙以减少热量获取:利用图神经网络进行多尺度学习以预测太阳辐射吸收
- DOI:
10.1016/j.buildenv.2025.113048 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:7.600
- 作者:
Hanmo Wang;Zhuyin Lu;Amanda Wojtasiak;Shawn Owyong;Bo Sun;Yu Fang;Shahin Vassigh;Alexander Lin - 通讯作者:
Alexander Lin
Shahin Vassigh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shahin Vassigh', 18)}}的其他基金
Collaborative Research: Intelligent Immersive Environments for Learning Robotics
协作研究:学习机器人的智能沉浸式环境
- 批准号:
2202610 - 财政年份:2022
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
RAPID: A Platform for Mitigating the Impacts of COVID-19 on the Healthcare System
RAPID:减轻 COVID-19 对医疗保健系统影响的平台
- 批准号:
2029557 - 财政年份:2020
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): Preparing the Future Workforce of Architecture, Engineering, and Construction for Robotic Automation Processes
融合加速器第一阶段 (RAISE):为机器人自动化流程的未来架构、工程和施工人员做好准备
- 批准号:
1937019 - 财政年份:2019
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
Collaborative Research: Strategies for Learning: Augmented Reality and Collaborative Problem-Solving for Building Sciences
协作研究:学习策略:增强现实和协作解决建筑科学问题
- 批准号:
1504898 - 财政年份:2015
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
- 批准号:
2314075 - 财政年份:2024
- 资助金额:
$ 39.94万 - 项目类别:
Continuing Grant
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
- 批准号:
BB/Y513763/1 - 财政年份:2024
- 资助金额:
$ 39.94万 - 项目类别:
Research Grant
Adaptive Multi-Source Transfer Learning Approaches for Environmental Challenges
应对环境挑战的自适应多源迁移学习方法
- 批准号:
EP/Y002539/1 - 财政年份:2024
- 资助金额:
$ 39.94万 - 项目类别:
Research Grant
PRIMES: A Biological and Socio-Environmental Approach to Machine Learning for Equitable and Proactive Cancer and Health Screening
PRIMES:机器学习的生物和社会环境方法,用于公平和主动的癌症和健康筛查
- 批准号:
2331502 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Standard Grant
CAREER: Data-driven design of graphene oxide for environmental applications enabled by natural language processing and machine learning techniques
职业:通过自然语言处理和机器学习技术实现氧化石墨烯环境应用的数据驱动设计
- 批准号:
2238415 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Continuing Grant
REMARKABLE: Rural Environmental Monitoring via ultra wide-ARea networKs And distriButed federated LEarning
引人注目:通过超广域网和分布式联合学习进行农村环境监测
- 批准号:
EP/X039048/1 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Research Grant
Implementation Grant: A Cultural, Learning, and Institutional Model to Accelerate Transformations for Environmental Justice (CLIMATE Justice)
实施补助金:加速环境正义转型的文化、学习和制度模式(CLIMATE Justice)
- 批准号:
2228216 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Continuing Grant
A study on environmental sound analysis based on unified and continual learning
基于统一持续学习的环境声分析研究
- 批准号:
23K16908 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Rural Environmental Monitoring via ultra wide-ARea networKs And distriButed federated Learning
通过超广域网和分布式联合学习进行农村环境监测
- 批准号:
EP/X039021/1 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Research Grant
Research on a machine learning method for estimating atmospheres of tourist attractions from environmental sounds considering concept drift
考虑概念漂移的环境声音估计旅游景点氛围的机器学习方法研究
- 批准号:
23K11335 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)