Convergence Accelerator Phase I (RAISE): Developing Intelligent Tech. for Workforce Empowerment: Credential Gap Diagnostics and Personalized Recommenders for Jobs and Retraining
融合加速器第一阶段(RAISE):开发智能技术。
基本信息
- 批准号:1937037
- 负责人:
- 金额:$ 98.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The NSF Convergence Accelerator supports team-based, multidisciplinary efforts that address challenges of national importance and show potential for deliverables in the near future. The broader impact/potential benefit of this Convergence Accelerator Phase I project results from its focus on the integration of research, innovation, and education to address societal challenges. It will develop new Artificial Intelligence (AI) technologies and innovative educational modules to tackle upskilling, reemployment, and AI ethics on multiple fronts. We will build scalable recommendation systems to enhance the public infrastructure of upskilling and reemployment, increase academia-industry partnerships, and develop multidisciplinary educational modules on ethics, transferrable soft skills, and job application strategies in the era of AI recruitment. Our interdisciplinary team brings expertise in computer science, industrial engineering, technical communication, philosophy, healthcare, and psychology. Our goal is to provide reemployment support by developing a free, accessible prototype of a personalized AI-driven user interface to help current and future workers with retraining and upskilling. Integrating diverse perspectives through academia-industry-community partnerships, we will develop, test, and evaluate public-facing credential gap diagnostics, interview probability analytics, and reskilling and job recommendation systems. A publicly accessible web portal will be provided as the central clearinghouse for all research and teaching materials. Success in this project will enable us to build a "Google of reemployment preparation and upskilling" for future workers and a "service supermarket Uber" for retraining programs. This Convergence Accelerator Phase I project aims to develop what we know to be the first public-facing AI platform that assists individual workers with upskilling and reemployment in a labor market increasingly characterized by automation, technological disruption, and AI recruiting. To start a retraining revolution, we will develop, implement, and test, on real-world data, a novel set of natural language processing, data mining, machine learning, and matching algorithms. Meanwhile, cutting-edge research will be conducted on AI ethics, AI-assisted recruiting, and soft skill transfer to address the challenges of workforce empowerment. Focusing on manufacturing, this project will develop reemployment support for machine operation, an occupation predicted to lose about 20% jobs to automation by 2026. It trains innovative AI tools with data about job responsibilities, competences, skills, occupations requiring complementary skills, and geographically scattered retraining resources. These AI tools then automate credential gap diagnostics and interview probability analysis before delivering personalized recommendations. This project promises to advance the frontier of workforce empowerment, professional communication, and AI ethics with scalable technical solutions, natural language processing, algorithm audits, and ethics reviews. A prototype of the AI-driven toolkit will be implemented to explore the technical requirements and scalability of AI-assisted workforce empowerment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持以团队为基础的多学科努力,以应对国家重要性的挑战,并在不久的将来展示可交付成果的潜力。 这个融合加速器第一阶段项目的更广泛的影响/潜在利益来自于其对研究,创新和教育的整合,以应对社会挑战的关注。它将开发新的人工智能(AI)技术和创新的教育模块,以解决多方面的技能提升,再就业和AI伦理问题。我们将建立可扩展的推荐系统,以加强提高技能和再就业的公共基础设施,增加企业与行业的伙伴关系,并在人工智能招聘时代开发有关道德、可转移软技能和求职策略的多学科教育模块。我们的跨学科团队带来了计算机科学,工业工程,技术通信,哲学,医疗保健和心理学方面的专业知识。我们的目标是通过开发一个免费的、可访问的个性化人工智能驱动的用户界面原型来提供再就业支持,以帮助当前和未来的工人进行再培训和提高技能。我们将通过企业-行业-社区合作伙伴关系整合不同的观点,开发,测试和评估面向公众的证书差距诊断,面试概率分析以及再培训和工作推荐系统。将提供一个可公开访问的门户网站作为所有研究和教学材料的中央交换所。该项目的成功将使我们能够为未来的工人建立一个“再就业准备和提高技能的谷歌”,并为再培训计划建立一个“服务超市优步”。这个融合加速器第一阶段项目旨在开发我们所知道的第一个面向公众的人工智能平台,帮助个人工人在日益以自动化,技术颠覆和人工智能招聘为特征的劳动力市场中提高技能和再就业。为了启动再培训革命,我们将在真实世界的数据上开发、实现和测试一套新颖的自然语言处理、数据挖掘、机器学习和匹配算法。与此同时,将对人工智能道德、人工智能辅助招聘和软技能转移进行前沿研究,以应对劳动力赋权的挑战。该项目以制造业为重点,将为机器操作提供再就业支持,预计到2026年,机器操作将失去约20%的工作岗位。它利用有关工作职责、能力、技能、需要补充技能的职业以及地理上分散的再培训资源的数据来训练创新的人工智能工具。这些人工智能工具然后在提供个性化建议之前自动进行证书差距诊断和面试概率分析。该项目有望通过可扩展的技术解决方案、自然语言处理、算法审计和道德审查来推进劳动力赋权、专业沟通和人工智能道德的前沿。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huiling Ding其他文献
Research on cutting characteristics of fiber bundle with high-speed photography
高速摄影纤维束切割特性研究
- DOI:
10.25165/j.ijabe.20201303.5677 - 发表时间:
2020-06 - 期刊:
- 影响因子:2.4
- 作者:
Zhitao He;Huiling Ding;Sanming Du;Zhen Li;Jiangtao Ji;Jian Li;Yongzhen Zhang - 通讯作者:
Yongzhen Zhang
HO x production due to radon decay in air
- DOI:
10.1007/bf00696855 - 发表时间:
1993-11-01 - 期刊:
- 影响因子:1.800
- 作者:
Huiling Ding;Philip K. Hopke - 通讯作者:
Philip K. Hopke
Tools, Potential, and Pitfalls of Social Media Screening: Social Profiling in the Era of AI-Assisted Recruiting
社交媒体筛选的工具、潜力和陷阱:人工智能辅助招聘时代的社交分析
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.2
- 作者:
Yeqing Kong;Huiling Ding - 通讯作者:
Huiling Ding
A comparative analysis of abrasive wear behaviors and mechanisms of pearlitic and carbide-free bainitic steels for grinding mill liners under varied impact loads
不同冲击载荷下用于磨机衬板的珠光体钢和无碳化物贝氏体钢的磨料磨损行为及机制的对比分析
- DOI:
10.1016/j.wear.2025.205765 - 发表时间:
2025-04-15 - 期刊:
- 影响因子:6.100
- 作者:
Weiming Liu;Tao Jiang;Shizhong Wei;Liujie Xu;Chong Chen;Hua Yu;Xin Jin;Huiling Ding;Chao Zhang;Kunming Pan - 通讯作者:
Kunming Pan
Rhetoric of a Global Epidemic: Transcultural Communication about SARS
全球流行病的言论:关于非典的跨文化传播
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Huiling Ding - 通讯作者:
Huiling Ding
Huiling Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
- 批准号:62002350
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Convergence Accelerator Track J Phase 2: Rapid Detection Technologies and Decision-Support Systems for Safe, Equitable Food Systems
融合加速器轨道 J 第 2 阶段:安全、公平食品系统的快速检测技术和决策支持系统
- 批准号:
2344877 - 财政年份:2023
- 资助金额:
$ 98.55万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Dairy NutriSols - Catalyzing technology adoption to promote food and nutrition security
NSF 融合加速器轨道 J 第 2 阶段:乳制品 NutriSols - 促进技术采用,促进食品和营养安全
- 批准号:
2345069 - 财政年份:2023
- 资助金额:
$ 98.55万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Cultivate IQ - Empowering Regional Food Systems
NSF 融合加速器轨道 J 第 2 阶段:培养智商 - 增强区域粮食系统能力
- 批准号:
2345176 - 财政年份:2023
- 资助金额:
$ 98.55万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: AquaSteady - Balancing Soil Moisture, A Seaweed-Based Hydrogel for Sustainable Agriculture
NSF 融合加速器轨道 J 第 2 阶段:AquaSteady - 平衡土壤湿度,一种用于可持续农业的海藻水凝胶
- 批准号:
2345052 - 财政年份:2023
- 资助金额:
$ 98.55万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: CropSmart - a digital twin for making wiser cropping decisions nationwide
NSF 融合加速器轨道 J 第 2 阶段:CropSmart - 用于在全国范围内做出更明智的种植决策的数字孪生
- 批准号:
2345039 - 财政年份:2023
- 资助金额:
$ 98.55万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track H: Phase II Smart Wearables for Expanding Workplace Access for People with Blindness and Low Vision
NSF 融合加速器轨道 H:第二阶段智能可穿戴设备,扩大失明和低视力人士的工作场所使用范围
- 批准号:
2345139 - 财政年份:2023
- 资助金额:
$ 98.55万 - 项目类别:
Cooperative Agreement
Convergence Accelerator Phase I (RAISE): Building the Federalism Data and Advanced Statistics Hub (FDASH)
融合加速器第一阶段 (RAISE):建立联邦制数据和高级统计中心 (FDASH)
- 批准号:
1937033 - 财政年份:2019
- 资助金额:
$ 98.55万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): Preparing the Future Workforce of Architecture, Engineering, and Construction for Robotic Automation Processes
融合加速器第一阶段 (RAISE):为机器人自动化流程的未来架构、工程和施工人员做好准备
- 批准号:
1937019 - 财政年份:2019
- 资助金额:
$ 98.55万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): Unlocking the Power of Data and Science to Empower American Workers
融合加速器第一阶段 (RAISE):释放数据和科学的力量,赋予美国工人权力
- 批准号:
1937061 - 财政年份:2019
- 资助金额:
$ 98.55万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): Competency Catalyst
融合加速器第一阶段 (RAISE):能力催化剂
- 批准号:
1937068 - 财政年份:2019
- 资助金额:
$ 98.55万 - 项目类别:
Standard Grant