Convergence Accelerator Phase I(RAISE): Rapid Dissemination of AI Microcredentials through Hands-On Industrial Robotics Education (RD-AIM-HIRE)

融合加速器第一阶段(RAISE):通过工业机器人实践教育(RD-AIM-HIRE)快速传播人工智能微证书

基本信息

  • 批准号:
    1937063
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2020-09-30
  • 项目状态:
    已结题

项目摘要

The NSF Convergence Accelerator supports team-based, multidisciplinary efforts that address challenges of national importance and show potential for deliverables in the near future. The broader impact/ potential benefit of this Convergence Accelerator Phase I project is to facilitate convergence of literature and methodologies from sociology, human-computer interaction, microcredentialing, software engineering, and improvement science to improve collaborative development and delivery processes for training robotics technicians who can meet the needs of American manufacturers both today and during the impending transition to an "Industry 4.0" paradigm in which factory floors are transformed into networked cyber-physical systems controlled by specialized artificial intelligence (AI) software. Technicians will remain critical in the installation and maintenance of advanced manufacturing systems, but they must understand such systems in order to troubleshoot them effectively. Good training is both authentic and consistently deliverable. Achieving this requires coordination between curriculum designers, subject matter experts, educational practitioners, and many other stakeholders. The endeavor has been approached alternately as a "product design" problem from the curriculum development perspective, or an "organizational coordination" problem from an organizational policy perspective. Our approach connects these two perspectives in a transdisciplinary effort to produce a technical training apparatus that can keep pace with rapid advancement in fields like machine learning and AI.This Convergence Accelerator Phase I project takes a design research approach to fusing the organizations-inward and product-outward approaches into a single efficient enterprise. Our project employs design and improvement science methods to answer questions about (i) How to design effective and deliverable machine learning (ML) curriculum for technician trainees with little or no STEM background; and (ii) How to design productive collaborative routines around this objective, given the wide variety of stakeholders. We start with a "shovel-ready" curriculum concept and an experienced production team that uses human-centered design (HCD) techniques to design usable, pedagogically effective activities. In addition to authorial consultation with AI subject matter experts, HCD involves data collection on instructors, learners, and their extended learning contexts including administrative and social aspects. We problematize collaboration patterns of the production team with other stakeholders during this process, identifying improved routines to accelerate the collaborative's joint work. This phase of the project produces knowledge of how to accelerate curriculum design through enhanced collaborative routines, knowledge of how ML/AI can be integrated into technician training, prototype ML/AI curriculum for non-four-year audiences, and direct training impact for pilot participants.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持以团队为基础的多学科努力,解决国家重要性的挑战,并在不久的将来显示出可交付成果的潜力。这个“融合加速器”第一阶段项目的更广泛影响/潜在利益是促进社会学、人机交互、微认证、软件工程、改进科学,以改善协作开发和交付流程,培训机器人技术人员,使其能够满足当今和即将向“工业4.0”范式过渡的美国制造商的需求,在“工业4.0”范式中,工厂车间将转变为由专门的人工智能(AI)软件控制的网络化网络物理系统。技术人员在先进制造系统的安装和维护中仍然至关重要,但他们必须了解这些系统,以便有效地排除故障。好的培训是真实的,并且可以持续交付。实现这一目标需要课程设计者、主题专家、教育从业者和许多其他利益相关者之间的协调。从课程开发的角度来看,这是一个“产品设计”问题,从组织政策的角度来看,这是一个“组织协调”问题。我们的方法将这两种观点结合起来,通过跨学科的努力,生产出一种技术训练设备,可以跟上机器学习和人工智能等领域的快速发展。这个融合加速器第一阶段项目采用设计研究方法,将组织内向和产品外向的方法融合到一个单一的高效企业中。我们的项目采用设计和改进科学的方法来回答以下问题:(i)如何为很少或没有STEM背景的技术培训生设计有效和可交付的机器学习(ML)课程;(ii)考虑到利益相关者的多样性,如何围绕这一目标设计富有成效的协作程序。我们从“准备就绪”的课程概念和经验丰富的制作团队开始,使用以人为本的设计(HCD)技术来设计可用的,教学上有效的活动。除了与人工智能主题专家进行书面咨询外,HCD还涉及教师、学习者及其扩展学习环境(包括行政和社会方面)的数据收集。在此过程中,我们对生产团队与其他利益相关者的协作模式提出问题,确定改进的例程以加速协作的联合工作。该项目的这一阶段产生了如何通过增强协作程序来加速课程设计的知识,了解了如何将ML/AI集成到技术人员培训中,为非四年制受众提供了ML/AI原型课程,并为试点参与者提供了直接的培训影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ross Higashi其他文献

Ross Higashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ross Higashi', 18)}}的其他基金

RAPID: DRL AI: Unlocking the Potential of Generative AI for Equity and Access in Robotics Education
RAPID:DRL AI:释放生成式 AI 的潜力,促进机器人教育的公平和访问
  • 批准号:
    2341190
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Using AI to Focus Teacher-Student Troubleshooting in Classroom Robotics
利用人工智能集中解决课堂机器人中的师生故障
  • 批准号:
    2118883
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Co-robotic Games for Low Resource Learners
适合资源匮乏学习者的协作机器人游戏
  • 批准号:
    1906753
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant

相似国自然基金

大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
  • 批准号:
    62002350
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Convergence Accelerator Track J Phase 2: Rapid Detection Technologies and Decision-Support Systems for Safe, Equitable Food Systems
融合加速器轨道 J 第 2 阶段:安全、公平食品系统的快速检测技术和决策支持系统
  • 批准号:
    2344877
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Dairy NutriSols - Catalyzing technology adoption to promote food and nutrition security
NSF 融合加速器轨道 J 第 2 阶段:乳制品 NutriSols - 促进技术采用,促进食品和营养安全
  • 批准号:
    2345069
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: Cultivate IQ - Empowering Regional Food Systems
NSF 融合加速器轨道 J 第 2 阶段:培养智商 - 增强区域粮食系统能力
  • 批准号:
    2345176
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: AquaSteady - Balancing Soil Moisture, A Seaweed-Based Hydrogel for Sustainable Agriculture
NSF 融合加速器轨道 J 第 2 阶段:AquaSteady - 平衡土壤湿度,一种用于可持续农业的海藻水凝胶
  • 批准号:
    2345052
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track J Phase 2: CropSmart - a digital twin for making wiser cropping decisions nationwide
NSF 融合加速器轨道 J 第 2 阶段:CropSmart - 用于在全国范围内做出更明智的种植决策的数字孪生
  • 批准号:
    2345039
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track H: Phase II Smart Wearables for Expanding Workplace Access for People with Blindness and Low Vision
NSF 融合加速器轨道 H:第二阶段智能可穿戴设备,扩大失明和低视力人士的工作场所使用范围
  • 批准号:
    2345139
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Cooperative Agreement
Convergence Accelerator Phase I (RAISE): Building the Federalism Data and Advanced Statistics Hub (FDASH)
融合加速器第一阶段 (RAISE):建立联邦制数据和高级统计中心 (FDASH)
  • 批准号:
    1937033
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I (RAISE): Preparing the Future Workforce of Architecture, Engineering, and Construction for Robotic Automation Processes
融合加速器第一阶段 (RAISE):为机器人自动化流程的未来架构、工程和施工人员做好准备
  • 批准号:
    1937019
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I (RAISE): Unlocking the Power of Data and Science to Empower American Workers
融合加速器第一阶段 (RAISE):释放数据和科学的力量,赋予美国工人权力
  • 批准号:
    1937061
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I (RAISE): Competency Catalyst
融合加速器第一阶段 (RAISE):能力催化剂
  • 批准号:
    1937068
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了