Multienzyme complexes of methanogenic archaea

产甲烷古菌的多酶复合物

基本信息

  • 批准号:
    1938948
  • 负责人:
  • 金额:
    $ 59.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-15 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Methane-producing archaea (methanogens) are “extremophiles”, organisms that thrive under conditions at the limit of life on Earth. Methanogens are unique organisms that grow by producing methane gas which can be harvested for electricity, heat, and transportation fuel. The project will study the biochemistry of a large multi-enzyme complex, akin to a “redox router” switch that has the ability to direct carbon towards either biomass or methane synthesis depending on the energy status of the cell. To the researchers' knowledge this is the first such biological router switch described in any organism that directly integrates energy conservation to biomass synthesis in one enzyme complex. The principal investigator will determine the ratio of enzymes in the complex, identify sites of interaction, and ascertain if the complex changes composition in response to growth substrate. A postdoctoral researcher and graduate students will be trained in the biochemical mechanisms of biological methane production. Research will be shared using hands-on educational modules through the Women in Science and other K-12 outreach activities. This research has the potential to enhance bio-methane production for renewable energy, mitigate methane production in the environment, and engineer methanogens to produce useful chemicals through synthetic biology.Previous work has shown that enzymes in the Wolfe Cycle (CoM-S-S-CoB heterodisulfide reductase, Hdr) and Wood-Ljungdahl CO2 fixation pathways (the carbon monoxide dehydrogenase Cdh, subunit of the acetyl-CoA decarbonylase/synthase, ACDS; and methylene tetrahydromethanopterin reductase, Mer) form a multienzyme complex in the methanogen Methanosarcina acetivorans. The goal of the project is to determine if methanogens adjust Cdh/Hdr/Mer complex stoichiometry in response to growth substrate switching. The hypothesis is that methanogenic growth kinetics of M. acetivorans is dependent on the formation and stoichiometry of the terminal oxidoreductase Hdr with the carbon monoxide dehydrogenase (Cdh) of the ACDS complex. Molecular, biochemical, and biophysical techniques will be used to detect and characterize multienzyme complexes that form in vitro and in vivo. Enzyme complex composition and subunit exchange kinetics will be assessed in relation to growth substrate, and the effect of deletion and overexpression of enzyme complex components on cell physiology will be measured. In vivo and in vitro crosslinking mass spectrometry will be employed to map protein interaction interfaces which will then be used to model the router complex using crystal structures of homologous subunits. Subunit stoichiometries will be manipulated and their effect on growth rate, product yield, and metabolic efficiency of cells will be determined. Graduate students and postdoctoral researchers from underrepresented groups will be trained in anaerobic microbiology, redox biochemistry, and synthetic biology techniques. Research will be disseminated through publications, presentations, and outreach activities such as the popular Women in Science workshop.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
产生甲烷的古生菌(产甲烷菌)是“极端微生物”,它们在地球生命极限的条件下繁衍生息。产甲烷菌是一种独特的生物,它们通过产生甲烷气体来生长,甲烷气体可以被收集来发电、取暖和运输燃料。该项目将研究一种大型多酶复合体的生物化学,类似于“氧化还原路由器”开关,它能够根据细胞的能量状态将碳引导到生物质或甲烷合成中。据研究人员所知,这是在任何生物体中描述的第一个直接将能量守恒与生物质合成结合在一个酶复合体中的生物路由器开关。首席研究员将确定复合体中酶的比例,确定相互作用的位置,并确定复合体是否会随着生长底物的生长而改变组成。一名博士后研究员和研究生将接受生物甲烷生产的生化机制方面的培训。将通过妇女参与科学和其他K-12外联活动,使用实践教育模块分享研究成果。这项研究有可能提高可再生能源的生物甲烷产量,减少环境中甲烷的产生,并通过合成生物学改造产甲烷菌生产有用的化学物质。先前的工作表明,在产甲烷菌中,Wolfe循环中的酶(COM-S-S-cob异二硫化物还原酶)和Wood-Ljugdahl二氧化碳固定途径中的酶(乙酰辅酶A脱羧酶/合成酶的亚基一氧化碳脱氢酶CDH和亚甲基四氢甲烷五氢喋呤还原酶Mer)在产甲烷菌中形成多酶复合体。该项目的目标是确定产甲烷菌是否调整CDH/HDR/Mer复合体的化学计量比以响应生长底物的切换。假设醋酸菌的产甲烷生长动力学依赖于末端氧化还原酶HDR与ACDS复合体的一氧化碳脱氢酶(CDH)的形成和化学计量比。将使用分子、生化和生物物理技术来检测和表征在体外和体内形成的多酶复合体。将评估与生长底物有关的酶复合体组成和亚基交换动力学,并测量酶复合体组分的缺失和过表达对细胞生理的影响。体内和体外的交联质谱将被用来绘制蛋白质相互作用的界面,然后将被用来用同源亚基的晶体结构来模拟路由器复合体。亚基化学计量学将被操纵,它们对细胞生长速度、产物产量和代谢效率的影响将被确定。来自代表性不足群体的研究生和博士后研究人员将接受厌氧微生物学、氧化还原生物化学和合成生物学技术方面的培训。研究将通过出版物、演示文稿和推广活动传播,如受欢迎的女性参与科学工作坊。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Addressing the climate crisis through engineering biology
通过工程生物学应对气候危机
  • DOI:
    10.1038/s44168-023-00089-8
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aurand, Emily R.;Moon, Tae Seok;Buan, Nicole R.;Solomon, Kevin V.;Köpke, Michael;EBRC Technical Roadmapping Working Group
  • 通讯作者:
    EBRC Technical Roadmapping Working Group
An Assessment of Short-Term Milestones in EBRC’s 2019 Roadmap, Engineering Biology
EBRC 2019 年路线图的短期里程碑评估,工程生物学
Metabolic Feedback Inhibition Influences Metabolite Secretion by the Human Gut Symbiont Bacteroides thetaiotaomicron
  • DOI:
    10.1128/msystems.00252-20
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Catlett, Jennie L.;Catazaro, Jonathan;Buan, Nicole R.
  • 通讯作者:
    Buan, Nicole R.
Engineering Biology for Climate and Sustainability: A research roadmap for a cleaner future
气候与可持续发展的工程生物学:更清洁未来的研究路线图
Anaerobic Production of Isoprene by Engineered Methanosarcina Species Archaea
  • DOI:
    10.1128/aem.02417-20
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Aldridge, Jared;Carr, Sean;Buan, Nicole R.
  • 通讯作者:
    Buan, Nicole R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicole Buan其他文献

Advancing archaeal research through FAIR resource and data sharing, and inclusive community building
通过公平资源和数据共享以及包容性社区建设推进古细菌研究
  • DOI:
    10.1038/s42003-025-07962-8
  • 发表时间:
    2025-03-29
  • 期刊:
  • 影响因子:
    5.100
  • 作者:
    Solenne Ithurbide;Nicole Buan;Stefan Schulze
  • 通讯作者:
    Stefan Schulze

Nicole Buan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicole Buan', 18)}}的其他基金

EAGER: Coupling Electron Transport and Metabolism using Biological Routers
EAGER:使用生物路由器耦合电子传输和代谢
  • 批准号:
    1449525
  • 财政年份:
    2014
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Standard Grant

相似国自然基金

新型多齿多联氮杂环氮氧化物多氨基多羧基类稀土发光配合物及其在免疫分析中的应用
  • 批准号:
    20761002
  • 批准年份:
    2007
  • 资助金额:
    16.0 万元
  • 项目类别:
    地区科学基金项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Integrating metabolic signals through FOXO transcriptional complexes.
通过 FOXO 转录复合物整合代谢信号。
  • 批准号:
    BB/X000265/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Research Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
  • 批准号:
    2404011
  • 财政年份:
    2024
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Standard Grant
Luminescent Organometallic Complexes with Fast Radiative Rates
具有快速辐射速率的发光有机金属配合物
  • 批准号:
    2348784
  • 财政年份:
    2024
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Continuing Grant
CAS: Catalytic Reactions Using Multinuclear Complexes
CAS:使用多核配合物的催化反应
  • 批准号:
    2349801
  • 财政年份:
    2024
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Standard Grant
ERI: Degradation of Polyelectrolyte Complexes via Enzyme Addition
ERI:通过添加酶降解聚电解质复合物
  • 批准号:
    2347080
  • 财政年份:
    2024
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Standard Grant
CAS: Cu, Fe, and Ni Pincer Complexes: A Platform for Fundamental Mechanistic Investigations and Reaction Discovery
CAS:Cu、Fe 和 Ni 钳配合物:基础机理研究和反应发现的平台
  • 批准号:
    2349827
  • 财政年份:
    2024
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Continuing Grant
Circularly Polarised Luminescent Photography and Lanthanide Complexes for Advanced Intelligent Security Applications
用于高级智能安全应用的圆偏振发光摄影和稀土配合物
  • 批准号:
    EP/X040259/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Research Grant
Emergent organocopper complexes as robust catalysts for electrosynthesis
新兴有机铜配合物作为电合成的强大催化剂
  • 批准号:
    DP240101902
  • 财政年份:
    2024
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Discovery Projects
Toward High Intensity Forbidden EPR Transitions In Bimetallic Complexes
双金属配合物中高强度禁止的 EPR 转变
  • 批准号:
    2419767
  • 财政年份:
    2024
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Standard Grant
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
  • 批准号:
    2340481
  • 财政年份:
    2024
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了