EAGER: Coupling Electron Transport and Metabolism using Biological Routers

EAGER:使用生物路由器耦合电子传输和代谢

基本信息

  • 批准号:
    1449525
  • 负责人:
  • 金额:
    $ 29.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Methanogens, which are found in nearly all anaerobic habitats, are key players in the global carbon cycle, producing 1 gigaton of methane gas annually. Methanogens survive by converting carbon in low-oxygen sediments to methane gas, which is then oxidized to carbon-dioxide in the aerobic environment, thereby playing a key role in the global carbon cycle. Recent preliminary evidence supports the involvement of a large multienzyme complex in biological methane production and resolves unexplained mutant phenotypes reported in the literature. Multienzyme redox complexes are important because cells must coordinate the relative ratio of oxidized vs reduced electron carriers with the catalytic requirements of enzymes involved in central metabolism. This project seeks to elucidate the basic biochemical principles by which this novel multi-enzyme complex coordinates metabolic processes in methanogens. Defining the mechanism by which this multi-enzyme complex functions will also help us understand the basic underlying biochemical principles related to multienzyme redox complexes in other archaea, bacteria, or eukaryotes. The project will support student training in anaerobic microbial physiology and biophysical biochemistry. The multi-enzyme complex is comprised of three enzymes, CoM-S-S-CoB heterodisulfide reductase (HdrD), acetyl-CoA decarbonylase/synthase (ACDS), and methylene tetrahydromethanopterin reductase (Mer). The studies supported by this award will use genetics, biophysical biochemistry, and molecular biology techniques to define the mechanism by which the HdrD:ACDS:Mer complex integrates flux through electron transport and metabolism. The HdrD:ACDS:Mer multienzyme complex directs carbon to biosynthesis or methanogenesis dependent on the ratios and oxidation state of electron carriers in the cell. Specific aims for the study include verifying HdrD:ACDS:Mer complex formation by in vivo crosslinking, affinity purification, and mass spectrometry of all component subunits. Experiments will also be conducted to investigate redox-dependent crosstalk between enzymes in vivo. Acetyl-CoA production and methyl-tetrahydromethanopterin-dependent reduction of ferredoxin, F420, and CoM-S-S-CoB electron carriers will be measured in coupled reactions catalyzed by the HdrD:ACDS:Mer complex in mutant cell extracts by UV/Vis spectrophotometry. Results of the study will be disseminated through presentations at scientific conferences and through peer-reviewed publications.
产甲烷菌几乎存在于所有厌氧栖息地,是全球碳循环的关键参与者,每年产生10亿吨甲烷气体。产甲烷菌通过将低氧沉积物中的碳转化为甲烷气体而生存,然后在有氧环境中氧化为二氧化碳,从而在全球碳循环中发挥关键作用。最近的初步证据支持参与一个大的多酶复合物在生物甲烷生产和解决不明原因的突变体表型在文献中报道。多酶氧化还原复合物很重要,因为细胞必须协调氧化与还原电子载体的相对比例与参与中心代谢的酶的催化要求。该项目旨在阐明这种新型多酶复合物协调产甲烷菌代谢过程的基本生化原理。定义这种多酶复合物的功能机制也将有助于我们理解与其他古细菌,细菌或真核生物中的多酶氧化还原复合物相关的基本生物化学原理。该项目将支持学生在厌氧微生物生理学和生物物理生物化学方面的培训。 多酶复合物由三种酶组成,CoM-S-S-CoB杂二硫还原酶(HdrD)、乙酰辅酶A脱羰基酶/合酶(ACDS)和亚甲基四氢甲蝶呤还原酶(Mer)。 该奖项支持的研究将使用遗传学,生物物理生物化学和分子生物学技术来定义HdrD:ACDS:Mer复合物通过电子传递和代谢整合通量的机制。HdrD:ACDS:Mer多酶复合物根据细胞中电子载体的比率和氧化态将碳引导至生物合成或甲烷生成。该研究的具体目的包括通过体内交联、亲和纯化和所有组分亚基的质谱分析来验证HdrD:ACDS:Mer复合物的形成。还将进行实验以研究体内酶之间的氧化还原依赖性串扰。将通过UV/维斯分光光度法,在突变体细胞提取物中HdrD:ACDS:Mer复合物催化的偶联反应中测定乙酰辅酶A的产生和铁氧还蛋白、F420和CoM-S-S-CoB电子载体的甲基-四氢甲烷蝶呤依赖性还原。研究结果将通过在科学会议上的介绍和同行评审的出版物传播。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicole Buan其他文献

Advancing archaeal research through FAIR resource and data sharing, and inclusive community building
通过公平资源和数据共享以及包容性社区建设推进古细菌研究
  • DOI:
    10.1038/s42003-025-07962-8
  • 发表时间:
    2025-03-29
  • 期刊:
  • 影响因子:
    5.100
  • 作者:
    Solenne Ithurbide;Nicole Buan;Stefan Schulze
  • 通讯作者:
    Stefan Schulze

Nicole Buan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicole Buan', 18)}}的其他基金

Multienzyme complexes of methanogenic archaea
产甲烷古菌的多酶复合物
  • 批准号:
    1938948
  • 财政年份:
    2020
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Standard Grant

相似国自然基金

基于外泌体TRPV4-Nox4 coupling途径探讨缺氧微环境调控鼻咽癌转移侵袭和血管新生的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAS-SC: Elucidating the Electrocatalytic Coupling of Nitrate and Carbon Dioxide: Toward Electron Efficient C-N Coupling
CAS-SC:阐明硝酸盐和二氧化碳的电催化耦合:迈向电子高效的 C-N 耦合
  • 批准号:
    2247194
  • 财政年份:
    2023
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant
Harnessing Electron-Donor-Acceptor Complexes to Enable Photo-Induced Metal-Free Cross-Coupling Reactions
利用电子供体-受体配合物实现光诱导无金属交叉偶联反应
  • 批准号:
    10715256
  • 财政年份:
    2023
  • 资助金额:
    $ 29.96万
  • 项目类别:
A unified model of electron stopping and electron-phonon coupling to better understand radiation damage in zirconium
电子停止和电子声子耦合的统一模型,以更好地了解锆的辐射损伤
  • 批准号:
    576687-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Alliance Grants
Ultrafast femtosecond laser control of electron dynamics in two-dimensional strong spin-orbit coupling materials
二维强自旋轨道耦合材料中电子动力学的超快飞秒激光控制
  • 批准号:
    22K13991
  • 财政年份:
    2022
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Developing electron transfer from chiral circularly polarized luminescence-based photocatalysts towards selective radical cross-coupling reactions
开发从手性圆偏振发光光催化剂到选择性自由基交叉偶联反应的电子转移
  • 批准号:
    10663899
  • 财政年份:
    2022
  • 资助金额:
    $ 29.96万
  • 项目类别:
Real space-time observation of electron-phonon coupling in lead halide perovskites by ultrafast nanoscopy
超快纳米显微镜对卤化铅钙钛矿电子声子耦合的实时时空观测
  • 批准号:
    22K14653
  • 财政年份:
    2022
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Electron-phonon coupling phenomena in low-dimensional and correlated materials
低维和相关材料中的电子声子耦合现象
  • 批准号:
    RGPIN-2019-07149
  • 财政年份:
    2022
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Discovery Grants Program - Individual
Developing electron transfer from chiral circularly polarized luminescence-based photocatalysts towards selective radical cross-coupling reactions
开发从手性圆偏振发光光催化剂到选择性自由基交叉偶联反应的电子转移
  • 批准号:
    10449749
  • 财政年份:
    2022
  • 资助金额:
    $ 29.96万
  • 项目类别:
GEM: Diffuse and Discrete Auroral Electron Precipitation Effects On Magnetosphere-Ionosphere Coupling
GEM:漫射和离散极光电子沉淀对磁层-电离层耦合的影响
  • 批准号:
    2225405
  • 财政年份:
    2022
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Continuing Grant
Electron-catalysed C-C coupling: an integrated experimental and computational approach
电子催化 C-C 耦合:一种集成的实验和计算方法
  • 批准号:
    2752686
  • 财政年份:
    2022
  • 资助金额:
    $ 29.96万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了