EAGER: (ST1) Collaborative Research: Exploring the emergence of peptide-based compartments through iterative machine learning, molecular modeling, and cell-free protein synthesis

EAGER:(ST1)协作研究:通过迭代机器学习、分子建模和无细胞蛋白质合成探索基于肽的隔室的出现

基本信息

  • 批准号:
    1939463
  • 负责人:
  • 金额:
    $ 14.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Non-technical Abstract:The cell is the fundamental building block of all living things. The materials within the cell are separated and protected from the environment by the cell membrane that is composed of molecules derived from fatty acids. These molecules function well under relatively benign natural conditions, such as in water at room temperature and pressure. Under harsh environments, such as extreme temperatures and pressures prevalent in industrial processes, these molecules are unstable therefore making it difficult to deploy cells within such environments. Furthermore, it is difficult to engineer natural membrane molecules with new functions such as the ability to sense their environment or bind particular surfaces or target molecules. It is the primary goal of this work to discover and synthesize a new class of molecules based on proteins as an alternative 'chassis' material for synthetic cell membranes that have improved mechanical and chemical stability and can be engineered to endow the membrane with new functions. Profs. Ferguson and Liu combine fast experimental synthesis and testing with computer simulations and artificial intelligence tools to search for new synthetic membranes with the ability to survive in harsh environments and the capacity to assemble synthetic cells together into synthetic tissues. By combining experiment and computation within a virtuous cycle, wherein computation guides experiment and experiment informs computational modeling, massive savings in labor, time, and resources are realized compared to traditional trial-and-improvement experimentation. In the course of this work, Profs. Ferguson and Liu provide research opportunities for post-doctoral, graduate, undergraduate, and high-school trainees, incorporate the outcomes of the research into classes that they teach, and engage in outreach activities through a Girls in Science and Engineering summer camp, Detroit Area Pre-College Engineering Program, and University of Chicago After School Matters summer internship program.Technical Abstract:The aim of this work is to discover novel peptidic biomaterials as an alternative "chassis" material for synthetic cells. While biology has settled on using lipid bilayer membrane as the material for compartmentalizing cytoplasm and for membrane-bound organelles, polypeptides offer an alternative biomaterial that can establish peptidic microcompartments with improved mechanical and chemical stability and the capacity for additional engineered biological function. Peptidic chassis materials offer unique advantages compared to lipid and polymersome membrane materials in terms of biocompatibility, chemical and mechanical stability, and capacity for additional functionalization that make them extremely desirable for applications in biomedicine, drug delivery, biosensing, and deployment in non-natural environments. The discovery of peptide sequences capable of spontaneous self-assembly into solute-filled microcompartments with desired materials properties is frustrated by the vast size of the protein sequence search space that makes exhaustive exploration intractable and Edisonian trial-and-improvement inefficient. In this work, we establish an integrated data-driven modeling and high-throughput cell-free synthesis platform to rapidly traverse sequence space. In a tightly integrated feedback loop between theory and modeling, we employ an 'active learning' paradigm to extract information from experimental data, guide rational traversal of the vast peptide sequence space, and optimally deploy experimental resources. Completion of this work will lead to the discovery of highly sought-after peptide-based synthetic cell 'chassis materials' that are more robust to harsh environments and which have complementary binding functionality to enable self-organization of the synthetic cells into synthetic tissues. In the course of this work, Profs. Ferguson and Liu offer research opportunities for high-school and undergraduate students to provide exposure to scientific research and improve representation in the STEM pipeline, train graduate and post-doctoral trainees in integrated computational and experimental research, incorporate the scientific outcomes in course materials, and engage in outreach activities through a Girls in Science and Engineering summer camp, Detroit Area Pre-College Engineering Program, and University of Chicago After School Matters summer internship program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:细胞是所有生物的基本构件。由来自脂肪酸的分子组成的细胞膜将细胞内的物质与环境分开并保护其与环境隔离。这些分子在相对温和的自然条件下功能良好,例如在室温和压力下的水中。在恶劣的环境下,如工业过程中普遍存在的极端温度和压力,这些分子不稳定,因此很难在这样的环境中部署电池。此外,很难设计出具有新功能的天然膜分子,如感知环境或结合特定表面或靶分子的能力。这项工作的主要目标是发现和合成一类新的基于蛋白质的分子,作为合成细胞膜的替代底盘材料,这种材料可以改善机械和化学稳定性,并可以通过工程赋予膜新的功能。教授们。弗格森和刘将快速实验合成和测试与计算机模拟和人工智能工具相结合,以寻找能够在恶劣环境中生存并将合成细胞组装成合成组织的新的合成膜。通过将实验和计算结合在一个良性循环中,其中计算指导实验,实验通知计算建模,与传统的试探式实验相比,实现了大量的人力、时间和资源的节省。在这项工作的过程中,教授。弗格森和刘为博士后、研究生、本科生和高中实习生提供研究机会,将研究成果融入他们教授的课堂,并通过科学与工程女孩夏令营、底特律地区大学预科工程项目和芝加哥大学课后事务暑期实习计划开展推广活动。技术摘要:这项工作的目的是发现新型多肽生物材料,作为合成细胞的替代“底盘”材料。虽然生物学已经决定使用脂质双层膜作为划分细胞质和膜结合细胞器的材料,但多肽提供了一种替代生物材料,可以建立具有更高机械和化学稳定性的多肽微室,并具有额外的工程生物功能。与脂类和聚合物膜材料相比,肽类底盘材料在生物相容性、化学和机械稳定性以及额外的官能化能力方面具有独特的优势,使其在生物医学、药物输送、生物传感和非自然环境中的应用方面非常理想。蛋白质序列搜索空间的巨大规模阻碍了能够自发组装成具有所需材料性质的溶质填充微室的肽序列的发现,这使得详尽的探索变得困难,爱迪生的试验和改进效率低下。在这项工作中,我们建立了一个集成的数据驱动建模和高通量无单元综合平台,以快速遍历序列空间。在理论和模型之间紧密结合的反馈回路中,我们使用了一种“主动学习”范式来从实验数据中提取信息,指导对巨大的多肽序列空间的合理遍历,并优化配置实验资源。这项工作的完成将导致发现备受追捧的基于多肽的合成细胞“底盘材料”,这种材料更能适应恶劣环境,并具有互补的结合功能,使合成细胞能够自组织成合成组织。在这项工作的过程中,教授。弗格森和刘为高中生和本科生提供研究机会,让他们接触科学研究,提高在STEM管道中的代表性,在综合计算和实验研究方面培训研究生和博士后实习生,将科学成果纳入课程材料,并通过科学与工程女孩夏令营、底特律地区大学预科工程项目和芝加哥大学课后事务暑期实习计划参与外展活动。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computational Design of Self-Assembling Peptide Chassis Materials for Synthetic Cells
合成细胞自组装肽底盘材料的计算设计
  • DOI:
    10.1039/d2me00169a
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Ma, Yutao;Kapoor, Rohan;Sharma, Bineet;Liu, Allen;Ferguson, Andrew L
  • 通讯作者:
    Ferguson, Andrew L
Facile formation of giant elastin-like polypeptide vesicles as synthetic cells
作为合成细胞轻松形成巨型弹性蛋白样多肽囊泡
  • DOI:
    10.1039/d1cc05579h
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Sharma, Bineet;Ma, Yutao;Hiraki, Harrison L;Baker, Brendon M;Ferguson, Andrew L;Liu, Allen P
  • 通讯作者:
    Liu, Allen P
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Ferguson其他文献

Enough is Enough: Policy Uncertainty and Acquisition Abandonment
受够了:政策不确定性和收购放弃
  • DOI:
    10.2139/ssrn.3883981
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Ferguson;Wei;P. Lam
  • 通讯作者:
    P. Lam
‘Know when to fold 'em’: Policy uncertainty and acquisition abandonment
“知道何时放弃”:政策不确定性和收购放弃
  • DOI:
    10.1111/acfi.13179
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Ferguson;Cecilia Wei Hu;P. Lam
  • 通讯作者:
    P. Lam
Nutrition and Isolation in a Rural US Population over 80 Years Old: A Descriptive Analysis of a Vulnerable Population
美国农村 80 岁以上人口的营养和隔离:弱势群体的描述性分析
Market reactions to Australian boutique resource investor presentations
市场对澳大利亚精品资源投资者演讲的反应
  • DOI:
    10.1016/j.resourpol.2011.07.004
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    10.2
  • 作者:
    Andrew Ferguson;T. Scott
  • 通讯作者:
    T. Scott
Share Purchase Plans in Australia: Issuer Characteristics and Valuation Implications
澳大利亚的股票购买计划:发行人特征和估值影响
  • DOI:
    10.1177/031289620803300205
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    P. Brown;Andrew Ferguson;K. Stone
  • 通讯作者:
    K. Stone

Andrew Ferguson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Ferguson', 18)}}的其他基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323730
  • 财政年份:
    2023
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Latent Space Simulators for the Efficient Estimation of Long-time Molecular Thermodynamics and Kinetics
用于有效估计长时间分子热力学和动力学的潜在空间模拟器
  • 批准号:
    2152521
  • 财政年份:
    2022
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
REU SITE: Research Experience for Undergraduates in Molecular Engineering
REU 网站:分子工程本科生的研究经验
  • 批准号:
    2050878
  • 财政年份:
    2021
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Type II: Data-Driven Characterization and Engineering of Protein Hydrophobicity
EAGER:合作研究:II 类:数据驱动的蛋白质疏水性表征和工程
  • 批准号:
    1844505
  • 财政年份:
    2019
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Nonlinear dimensionality reduction and enhanced sampling in molecular simulation using auto-associative neural networks
使用自关联神经网络进行分子模拟中的非线性降维和增强采样
  • 批准号:
    1841805
  • 财政年份:
    2018
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
CAREER: Teaching Machines to Design Self-Assembling Materials
职业:教授机器设计自组装材料
  • 批准号:
    1841800
  • 财政年份:
    2018
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Continuing Grant
Nonlinear Manifold Learning of Protein Folding Funnels from Delay-Embedded Experimental Measurements
来自延迟嵌入实验测量的蛋白质折叠漏斗的非线性流形学习
  • 批准号:
    1841810
  • 财政年份:
    2018
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Self-assembled peptide-pi-electron supramolecular polymers for bioinspired energy harvesting, transport and management
DMREF:合作研究:用于仿生能量收集、运输和管理的自组装肽-π-电子超分子聚合物
  • 批准号:
    1841807
  • 财政年份:
    2018
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Self-assembled peptide-pi-electron supramolecular polymers for bioinspired energy harvesting, transport and management
DMREF:合作研究:用于仿生能量收集、运输和管理的自组装肽-π-电子超分子聚合物
  • 批准号:
    1729011
  • 财政年份:
    2017
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
Nonlinear dimensionality reduction and enhanced sampling in molecular simulation using auto-associative neural networks
使用自关联神经网络进行分子模拟中的非线性降维和增强采样
  • 批准号:
    1664426
  • 财政年份:
    2017
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻耐盐新基因ST1的克隆与耐盐机制解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
水稻雌蕊发育新调控基因ST1的分子机制研究
  • 批准号:
    31201091
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
大肠杆菌耐热性肠毒素(ST1)基因突变及其免疫原性研究
  • 批准号:
    30560110
  • 批准年份:
    2005
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

EAGER: (ST1) Dissipative Self-Assembly of Metabolic Soft Matter
EAGER:(ST1)代谢软物质的耗散自组装
  • 批准号:
    1938303
  • 财政年份:
    2019
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
EAGER: (ST1) Collaborative Research: Exploring the emergence of peptide-based compartments through iterative machine learning, molecular modeling, and cell-free protein synthesis
EAGER:(ST1)协作研究:通过迭代机器学习、分子建模和无细胞蛋白质合成探索基于肽的隔室的出现
  • 批准号:
    1939534
  • 财政年份:
    2019
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
EAGER: (ST1) Motile Matter- Reconstituting Cell Motility using Osmotic Robots
EAGER:(ST1)运动物质 - 使用渗透机器人重建细胞运动性
  • 批准号:
    1940020
  • 财政年份:
    2019
  • 资助金额:
    $ 14.99万
  • 项目类别:
    Standard Grant
EX VIVO TREATMENT WITH ST1 IMMUNOTOXIN FOR PREVENT OF GRAFT VERSUS HOST DISEASE
使用 ST1 免疫毒素进行体外治疗以预防移植物抗宿主病
  • 批准号:
    3766620
  • 财政年份:
  • 资助金额:
    $ 14.99万
  • 项目类别:
EX VIVO TREATMENT WITH ST1 IMMUNOTOXIN FOR PREVENTION OF GVHD
使用 ST1 免疫毒素进行体外治疗以预防 GVHD
  • 批准号:
    3852338
  • 财政年份:
  • 资助金额:
    $ 14.99万
  • 项目类别:
ST1 IMMUNOTOXIN TREATMENT FOR PREVENTION OF GVHD
ST1 免疫毒素治疗预防 GVHD
  • 批准号:
    3888104
  • 财政年份:
  • 资助金额:
    $ 14.99万
  • 项目类别:
ST1-RTA MARROW TREATMENT FOR MHC MATCHED BMT
MHC 匹配 BMT 的 ST1-RTA 骨髓治疗
  • 批准号:
    3928396
  • 财政年份:
  • 资助金额:
    $ 14.99万
  • 项目类别:
ST1-RTA IMMUNOTOXIN FOR UNRELATED DONOR BONE MARROW TRANSPLANTS
用于无关供体骨髓移植的 ​​ST1-RTA 免疫毒素
  • 批准号:
    3788721
  • 财政年份:
  • 资助金额:
    $ 14.99万
  • 项目类别:
ST1-RTA IMMUNOTOXIN FOR UNRELATED DONOR BONE MARROW TRANSPLANTS
用于无关供体骨髓移植的 ​​ST1-RTA 免疫毒素
  • 批准号:
    3852368
  • 财政年份:
  • 资助金额:
    $ 14.99万
  • 项目类别:
ST1-RTA IMMUNOTOXIN FOR UNRELATED DONOR BONE MARROW TRANSPLANTS
用于无关供体骨髓移植的 ​​ST1-RTA 免疫毒素
  • 批准号:
    3866987
  • 财政年份:
  • 资助金额:
    $ 14.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了