EAGER: (ST1) Collaborative Research: Exploring the emergence of peptide-based compartments through iterative machine learning, molecular modeling, and cell-free protein synthesis

EAGER:(ST1)协作研究:通过迭代机器学习、分子建模和无细胞蛋白质合成探索基于肽的隔室的出现

基本信息

项目摘要

Non-technical Abstract:The cell is the fundamental building block of all living things. The materials within the cell are separated and protected from the environment by the cell membrane that is composed of molecules derived from fatty acids. These molecules function well under relatively benign natural conditions, such as in water at room temperature and pressure. Under harsh environments, such as extreme temperatures and pressures prevalent in industrial processes, these molecules are unstable therefore making it difficult to deploy cells within such environments. Furthermore, it is difficult to engineer natural membrane molecules with new functions such as the ability to sense their environment or bind particular surfaces or target molecules. It is the primary goal of this work to discover and synthesize a new class of molecules based on proteins as an alternative 'chassis' material for synthetic cell membranes that have improved mechanical and chemical stability and can be engineered to endow the membrane with new functions. Profs. Ferguson and Liu combine fast experimental synthesis and testing with computer simulations and artificial intelligence tools to search for new synthetic membranes with the ability to survive in harsh environments and the capacity to assemble synthetic cells together into synthetic tissues. By combining experiment and computation within a virtuous cycle, wherein computation guides experiment and experiment informs computational modeling, massive savings in labor, time, and resources are realized compared to traditional trial-and-improvement experimentation. In the course of this work, Profs. Ferguson and Liu provide research opportunities for post-doctoral, graduate, undergraduate, and high-school trainees, incorporate the outcomes of the research into classes that they teach, and engage in outreach activities through a Girls in Science and Engineering summer camp, Detroit Area Pre-College Engineering Program, and University of Chicago After School Matters summer internship program.Technical Abstract:The aim of this work is to discover novel peptidic biomaterials as an alternative "chassis" material for synthetic cells. While biology has settled on using lipid bilayer membrane as the material for compartmentalizing cytoplasm and for membrane-bound organelles, polypeptides offer an alternative biomaterial that can establish peptidic microcompartments with improved mechanical and chemical stability and the capacity for additional engineered biological function. Peptidic chassis materials offer unique advantages compared to lipid and polymersome membrane materials in terms of biocompatibility, chemical and mechanical stability, and capacity for additional functionalization that make them extremely desirable for applications in biomedicine, drug delivery, biosensing, and deployment in non-natural environments. The discovery of peptide sequences capable of spontaneous self-assembly into solute-filled microcompartments with desired materials properties is frustrated by the vast size of the protein sequence search space that makes exhaustive exploration intractable and Edisonian trial-and-improvement inefficient. In this work, we establish an integrated data-driven modeling and high-throughput cell-free synthesis platform to rapidly traverse sequence space. In a tightly integrated feedback loop between theory and modeling, we employ an 'active learning' paradigm to extract information from experimental data, guide rational traversal of the vast peptide sequence space, and optimally deploy experimental resources. Completion of this work will lead to the discovery of highly sought-after peptide-based synthetic cell 'chassis materials' that are more robust to harsh environments and which have complementary binding functionality to enable self-organization of the synthetic cells into synthetic tissues. In the course of this work, Profs. Ferguson and Liu offer research opportunities for high-school and undergraduate students to provide exposure to scientific research and improve representation in the STEM pipeline, train graduate and post-doctoral trainees in integrated computational and experimental research, incorporate the scientific outcomes in course materials, and engage in outreach activities through a Girls in Science and Engineering summer camp, Detroit Area Pre-College Engineering Program, and University of Chicago After School Matters summer internship program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:细胞是所有生物的基本组成部分。 细胞内的物质通过由脂肪酸衍生的分子组成的细胞膜分离并保护其免受环境影响。 这些分子在相对温和的自然条件下,如在室温和常压下的水中,功能良好。在恶劣的环境下,例如工业过程中普遍存在的极端温度和压力,这些分子是不稳定的,因此难以在这种环境中部署细胞。 此外,很难设计具有新功能的天然膜分子,例如感知其环境或结合特定表面或靶分子的能力。 这项工作的主要目标是发现和合成一类新的基于蛋白质的分子,作为合成细胞膜的替代“底盘”材料,具有改善的机械和化学稳定性,并且可以被工程化以赋予膜新的功能。 教授Ferguson和Liu将快速实验合成和测试与计算机模拟和人工智能工具相结合,以寻找能够在恶劣环境中生存并能够将合成细胞组装成合成组织的新合成膜。 通过将实验和计算结合在一个良性循环中,其中计算指导实验,实验通知计算建模,与传统的试验和改进实验相比,实现了劳动力,时间和资源的大量节省。 在这项工作中,教授。Ferguson和Liu为博士后、研究生、本科生和高中学员提供研究机会,将研究成果融入他们所教授的课程,并通过科学与工程夏令营、底特律地区大学预科工程项目和芝加哥大学课后事务暑期实习项目参与外展活动。技术摘要:这项工作的目的是发现新的肽生物材料作为合成细胞的替代“底盘”材料。 虽然生物学已经决定使用脂质双层膜作为用于区室化细胞质和膜结合细胞器的材料,但多肽提供了一种替代的生物材料,其可以建立具有改善的机械和化学稳定性以及用于额外工程生物功能的能力的肽微区室。 与脂质和聚合物囊泡膜材料相比,肽底盘材料在生物相容性、化学和机械稳定性以及额外功能化的能力方面具有独特的优势,这使得它们在生物医学、药物递送、生物传感和非自然环境中的部署中的应用非常理想。 能够自发自组装成具有所需材料性质的充满溶质的微区室的肽序列的发现受到蛋白质序列搜索空间的巨大尺寸的阻碍,这使得详尽的探索难以进行,并且爱迪生式的试验和改进效率低下。 在这项工作中,我们建立了一个集成的数据驱动的建模和高通量的无细胞合成平台,以快速遍历序列空间。 在理论和建模之间紧密集成的反馈回路中,我们采用“主动学习”范式从实验数据中提取信息,引导理性遍历广阔的肽序列空间,并优化部署实验资源。 这项工作的完成将导致发现高度抢手的基于肽的合成细胞“底盘材料”,这些材料对恶劣环境更稳健,并且具有互补的结合功能,以使合成细胞能够自组织成合成组织。 在这项工作中,教授。弗格森和刘为高中和本科生提供研究机会,以提供接触科学研究和提高在STEM管道中的代表性,在综合计算和实验研究中培养研究生和博士后学员,将科学成果纳入课程材料,并通过科学与工程夏令营,底特律地区大学预科工程计划,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Facile formation of giant elastin-like polypeptide vesicles as synthetic cells
作为合成细胞轻松形成巨型弹性蛋白样多肽囊泡
  • DOI:
    10.1039/d1cc05579h
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Sharma, Bineet;Ma, Yutao;Hiraki, Harrison L;Baker, Brendon M;Ferguson, Andrew L;Liu, Allen P
  • 通讯作者:
    Liu, Allen P
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Allen Po-Chih Liu其他文献

Allen Po-Chih Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Allen Po-Chih Liu', 18)}}的其他基金

Sensing and modulating the chemokine environment with synthetic cells
用合成细胞感知和调节趋化因子环境
  • 批准号:
    10566980
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201236
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
  • 批准号:
    10643814
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
  • 批准号:
    10251872
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
  • 批准号:
    10722432
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
  • 批准号:
    10031135
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
  • 批准号:
    10544399
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
Reconstituting Biology – a Chart to Minimal Cells
重建生物学——最小细胞图表
  • 批准号:
    2013809
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
  • 批准号:
    10396123
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
ST2: Programmable Interfaces- Exploring the Intersection of Synthetic Biology, Biomaterials, and Soft Matter
ST2:可编程接口 - 探索合成生物学、生物材料和软物质的交叉点
  • 批准号:
    1939310
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻耐盐新基因ST1的克隆与耐盐机制解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
水稻雌蕊发育新调控基因ST1的分子机制研究
  • 批准号:
    31201091
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
大肠杆菌耐热性肠毒素(ST1)基因突变及其免疫原性研究
  • 批准号:
    30560110
  • 批准年份:
    2005
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

EAGER: (ST1) Collaborative Research: Exploring the emergence of peptide-based compartments through iterative machine learning, molecular modeling, and cell-free protein synthesis
EAGER:(ST1)协作研究:通过迭代机器学习、分子建模和无细胞蛋白质合成探索基于肽的隔室的出现
  • 批准号:
    1939463
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: (ST1) Dissipative Self-Assembly of Metabolic Soft Matter
EAGER:(ST1)代谢软物质的耗散自组装
  • 批准号:
    1938303
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: (ST1) Motile Matter- Reconstituting Cell Motility using Osmotic Robots
EAGER:(ST1)运动物质 - 使用渗透机器人重建细胞运动性
  • 批准号:
    1940020
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EX VIVO TREATMENT WITH ST1 IMMUNOTOXIN FOR PREVENT OF GRAFT VERSUS HOST DISEASE
使用 ST1 免疫毒素进行体外治疗以预防移植物抗宿主病
  • 批准号:
    3766620
  • 财政年份:
  • 资助金额:
    $ 15万
  • 项目类别:
EX VIVO TREATMENT WITH ST1 IMMUNOTOXIN FOR PREVENTION OF GVHD
使用 ST1 免疫毒素进行体外治疗以预防 GVHD
  • 批准号:
    3852338
  • 财政年份:
  • 资助金额:
    $ 15万
  • 项目类别:
ST1 IMMUNOTOXIN TREATMENT FOR PREVENTION OF GVHD
ST1 免疫毒素治疗预防 GVHD
  • 批准号:
    3888104
  • 财政年份:
  • 资助金额:
    $ 15万
  • 项目类别:
ST1-RTA MARROW TREATMENT FOR MHC MATCHED BMT
MHC 匹配 BMT 的 ST1-RTA 骨髓治疗
  • 批准号:
    3928396
  • 财政年份:
  • 资助金额:
    $ 15万
  • 项目类别:
ST1-RTA IMMUNOTOXIN FOR UNRELATED DONOR BONE MARROW TRANSPLANTS
用于无关供体骨髓移植的 ​​ST1-RTA 免疫毒素
  • 批准号:
    3788721
  • 财政年份:
  • 资助金额:
    $ 15万
  • 项目类别:
ST1-RTA IMMUNOTOXIN FOR UNRELATED DONOR BONE MARROW TRANSPLANTS
用于无关供体骨髓移植的 ​​ST1-RTA 免疫毒素
  • 批准号:
    3852368
  • 财政年份:
  • 资助金额:
    $ 15万
  • 项目类别:
ST1-RTA IMMUNOTOXIN FOR UNRELATED DONOR BONE MARROW TRANSPLANTS
用于无关供体骨髓移植的 ​​ST1-RTA 免疫毒素
  • 批准号:
    3866987
  • 财政年份:
  • 资助金额:
    $ 15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了