CoPe EAGER: Collaborative Research: A GeoAI Data-Fusion Framework for Real-Time Assessment of Flood Damage and Transportation Resilience by Integrating Complex Sensor Datasets
CoPe EAGER:协作研究:GeoAI 数据融合框架,通过集成复杂的传感器数据集实时评估洪水损失和运输弹性
基本信息
- 批准号:1940091
- 负责人:
- 金额:$ 16.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Traditional modeling approaches for flood damage assessment are often labor-intensive and time-consuming due to requirements for domain expertise, training data, and field surveys. Additionally, the lack of data and standard methodologies makes it more challenging to assess transportation network resilience in real-time during flood disasters. To address these challenges, this project aims to integrate novel data streams from both physical sensor networks (e.g., remotely-sensed data using unmanned aerial vehicles [UAVs]), and citizen sensor networks (e.g., crowdsourced traffic data, social media and community responsive teams connected through a developed mobile app). The goal is to develop a framework for real-time assessment of damage and the resilience of urban transportation infrastructures after coastal floods via the state-of-the-art computer vision, deep learning and data fusion technologies. The project will also advance Data Science through multi-disciplinary and multi-institutional collaborations. The project is expected to improve the sustainability, resilience, livability, and general well-being of coastal communities by having a direct impact on the effectiveness, capability, and potential of using both physical and social sensor data. This will in turn enable and transform damage assessments, and identify critical and vulnerable components in transportation networks in a more effective and efficient manner. The interdisciplinary research team, along with students and collaborators from different coastal regions, will facilitate the sharing of knowledge and technologies from different socio-environmental contexts and testing the transferability of the research outcomes.The project will harmonize physical and citizen sensors within a geospatial artificial intelligence (GeoAI) data-fusion framework with a focus on three research thrusts: (1) unsupervised flood extent detection by integrating UAV images collected throughout this project with existing geospatial data (e.g., road networks and building footprints); (2) flood depth estimation using deep learning and computer vision techniques combined with crowdsourced photos and UAV imagery; and (3) assessment of the impact on and resilience of transportation networks based on near real-time flood and damage information. The innovative methodology will be demonstrated and deployed through collaborative efforts in response to future flood events as well as several historical storms. The project will produce open-source algorithms for future educational use, raw and processed datasets and associated processing software, a mobile app to engage community responsive science teams, and three research publications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于需要领域专业知识、培训数据和实地调查,传统的洪水灾害评估建模方法往往是劳动密集型和耗时的。此外,缺乏数据和标准方法使得在洪水灾害期间实时评估交通网络的恢复能力更具挑战性。为了应对这些挑战,该项目旨在整合来自物理传感器网络(例如,使用无人机[uav]的遥感数据)和公民传感器网络(例如,众包交通数据,社交媒体和社区响应团队通过开发的移动应用程序连接)的新数据流。目标是开发一个框架,通过最先进的计算机视觉、深度学习和数据融合技术,实时评估沿海洪水后城市交通基础设施的损害和恢复能力。该项目还将通过多学科和多机构合作推进数据科学。该项目预计将通过对使用物理和社会传感器数据的有效性、能力和潜力产生直接影响,提高沿海社区的可持续性、弹性、宜居性和总体福祉。这将反过来促进和改变损害评估,并以更有效和高效的方式识别交通网络中的关键和脆弱部件。跨学科研究团队将与来自不同沿海地区的学生和合作者一起,促进来自不同社会环境背景的知识和技术的共享,并测试研究成果的可转移性。该项目将在地理空间人工智能(GeoAI)数据融合框架内协调物理和公民传感器,重点关注三个研究重点:(1)通过将整个项目收集的无人机图像与现有地理空间数据(例如,道路网络和建筑足迹)相结合,进行无监督洪水范围检测;(2)结合众包照片和无人机图像,利用深度学习和计算机视觉技术估算洪水深度;(3)基于近实时洪水和灾害信息的交通网络影响和恢复能力评估。创新的方法将通过合作来展示和部署,以应对未来的洪水事件以及几次历史风暴。该项目将生产供未来教育使用的开源算法、原始和处理过的数据集及相关处理软件、一款用于社区科学团队的移动应用程序,以及三份研究出版物。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Urban Flood Mapping with Residual Patch Similarity Learning
- DOI:10.1145/3356471.3365235
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Bo Peng;Xinyi Liu;Zonglin Meng;Qunying Huang
- 通讯作者:Bo Peng;Xinyi Liu;Zonglin Meng;Qunying Huang
Geographic context-aware text mining: enhance social media message classification for situational awareness by integrating spatial and temporal features
- DOI:10.1080/17538947.2021.1968048
- 发表时间:2021-08
- 期刊:
- 影响因子:5.1
- 作者:C. Scheele;Manzhu Yu;Qunying Huang
- 通讯作者:C. Scheele;Manzhu Yu;Qunying Huang
Flood Depth Estimation from Web Images
- DOI:10.1145/3356395.3365542
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Zonglin Meng;Bo Peng;Qunying Huang
- 通讯作者:Zonglin Meng;Bo Peng;Qunying Huang
Situational awareness extraction: a comprehensive review of social media data classification during natural hazards
- DOI:10.1080/19475683.2020.1817146
- 发表时间:2020-10
- 期刊:
- 影响因子:5
- 作者:Jirapa Vongkusolkit;Qunying Huang
- 通讯作者:Jirapa Vongkusolkit;Qunying Huang
Flood Depth Assessment with Location-Based Social Network Data and Google Street View - A Case Study with Buildings as Reference Objects
- DOI:10.1109/igarss46834.2022.9884254
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Boyuan Zou;Bo Peng;Qunying Huang
- 通讯作者:Boyuan Zou;Bo Peng;Qunying Huang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qunying Huang其他文献
A GPU-accelerated adaptive kernel density estimation approach for efficient point pattern analysis on spatial big data
一种用于空间大数据高效点模式分析的 GPU 加速自适应核密度估计方法
- DOI:
10.1080/13658816.2017.1324975 - 发表时间:
2017-05 - 期刊:
- 影响因子:5.7
- 作者:
Guiming Zhang;A-Xing Zhu;Qunying Huang - 通讯作者:
Qunying Huang
Study on the Creep and Fatigue Properties of CLAM Steel
CLAM钢的蠕变和疲劳性能研究
- DOI:
10.4028/www.scientific.net/ast.94.12 - 发表时间:
2014-10 - 期刊:
- 影响因子:0
- 作者:
Yanyun Zhao;Shaojun Liu;Chunjing Li;Boyu Zhong;Gang Xu;Qunying Huang;Yican Wu - 通讯作者:
Yican Wu
Development of reduced activation ferritic/martensitic steels in China
- DOI:
10.1016/j.jnucmat.2022.153887 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Qunying Huang;Xiaoyu Wang;Shouhua Sun;Yongchang Liu;Hongbin Liao;Pengfei Zheng;Lei Peng;Yutao Zhai - 通讯作者:
Yutao Zhai
How to use cloud computing
如何使用云计算
- DOI:
10.1201/b16106-7 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Kai Liu;Qunying Huang;J. Xia;Zhenlong Li;Peter Lostritto - 通讯作者:
Peter Lostritto
Effect of strain rate on the mechanical properties of CLAM steel in liquid PbLi eutectic
液态PbLi共晶中应变速率对CLAM钢力学性能的影响
- DOI:
10.1016/j.fusengdes.2013.03.046 - 发表时间:
2013-10 - 期刊:
- 影响因子:1.7
- 作者:
Jing Liu;Qunying Huang;Zhizhong Jiang;Zhiqiang Zhu;Mingyang Li - 通讯作者:
Mingyang Li
Qunying Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CoPe EAGER: Collaborative Research: COMET: the Coastlines and people Open data and MachinE learning sprinT
CoPe EAGER:协作研究:COMET:海岸线和人类 开放数据和机器学习冲刺
- 批准号:
2102126 - 财政年份:2020
- 资助金额:
$ 16.32万 - 项目类别:
Standard Grant
CoPe EAGER: Collaborative Research: A GeoAI Data-Fusion Framework for Real-Time Assessment of Flood Damage and Transportation Resilience by Integrating Complex Sensor Datasets
CoPe EAGER:协作研究:GeoAI 数据融合框架,通过集成复杂的传感器数据集实时评估洪水损失和运输弹性
- 批准号:
2052063 - 财政年份:2020
- 资助金额:
$ 16.32万 - 项目类别:
Standard Grant
CoPe EAGER: Collaborative Research: A GeoAI Data-Fusion Framework for Real-Time Assessment of Flood Damage and Transportation Resilience by Integrating Complex Sensor Datasets
CoPe EAGER:协作研究:GeoAI 数据融合框架,通过集成复杂的传感器数据集实时评估洪水损失和运输弹性
- 批准号:
1940230 - 财政年份:2020
- 资助金额:
$ 16.32万 - 项目类别:
Standard Grant
CoPe EAGER: Collaborative Research: A GeoAI Data-Fusion Framework for Real-Time Assessment of Flood Damage and Transportation Resilience by Integrating Complex Sensor Datasets
CoPe EAGER:协作研究:GeoAI 数据融合框架,通过集成复杂的传感器数据集实时评估洪水损失和运输弹性
- 批准号:
1940163 - 财政年份:2020
- 资助金额:
$ 16.32万 - 项目类别:
Standard Grant
CoPe EAGER: Collaborative Research: COMET: the Coastlines and people Open data and MachinE learning sprinT
CoPe EAGER:协作研究:COMET:海岸线和人类 开放数据和机器学习冲刺
- 批准号:
1939954 - 财政年份:2019
- 资助金额:
$ 16.32万 - 项目类别:
Standard Grant
CoPe EAGER: Collaborative Research: COMET: the Coastlines and people Open data and MachinE learning sprinT
CoPe EAGER:协作研究:COMET:海岸线和人类 开放数据和机器学习冲刺
- 批准号:
1940006 - 财政年份:2019
- 资助金额:
$ 16.32万 - 项目类别:
Standard Grant
CoPe EAGER: Collaborative Research: Evaluating Coastal Community Resilience Bonds to Facilitate Community Recovery
CoPe EAGER:合作研究:评估沿海社区复原力债券以促进社区恢复
- 批准号:
1940127 - 财政年份:2019
- 资助金额:
$ 16.32万 - 项目类别:
Standard Grant
CoPe EAGER: Collaborative Research: Evaluating Coastal Community Resilience Bonds to Facilitate Community Recovery
CoPe EAGER:合作研究:评估沿海社区复原力债券以促进社区恢复
- 批准号:
1940192 - 财政年份:2019
- 资助金额:
$ 16.32万 - 项目类别:
Standard Grant
CoPe: Collaborative Research: EAGER: An analysis of the impacts of sea-level change related flooding on commuting patterns and neighborhood gentrification.
CoPe:合作研究:EAGER:分析与海平面变化相关的洪水对通勤模式和社区高档化的影响。
- 批准号:
1939841 - 财政年份:2019
- 资助金额:
$ 16.32万 - 项目类别:
Standard Grant
CoPe: EAGER: Collaborative Research: Development of A Novel, Mobile Coastal Observatory for Quantifying Coastal Carbon Cycling by Professional and Citizen Scientists
CoPe:EAGER:合作研究:由专业和公民科学家开发新型移动式沿海观测站,用于量化沿海碳循环
- 批准号:
1940100 - 财政年份:2019
- 资助金额:
$ 16.32万 - 项目类别:
Standard Grant














{{item.name}}会员




