Workshop: Applications of Machine Learning to Experimental Mechanics and Materials; Arlington, Virginia; 24-25 September 2019
研讨会:机器学习在实验力学和材料中的应用;
基本信息
- 批准号:1940102
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant supports a workshop to explore the use of machine learning with experimental mechanics and materials. The rapid development of new materials with complex processing and structure, along with the emergence of new and potent computer-assisted experimental methods for materials and mechanical characterization have led to challenges in effectively and efficiently analyzing very large data sets in order to determine the important parameters that control the overall mechanical behavior. While established and detailed methodologies, grounded on materials physics and mechanics, serve as the foundation to evaluate and design new classes of materials with desirable mechanical properties, Data Science driven approaches for rapid assessment of important problem parameters could accelerate materials development and facilitate transitions through rapid processes for identifying structure-mechanical properties relationships from large experimental and modeling data sets. Such capabilities can impact new and emerging manufacturing methods, e.g. additive manufacturing, help us to understand complex processes in biological material systems, and finally accelerate the design of mechanically robust material systems. This workshop aims at connecting mechanicians with researchers in the Data Sciences field for a dialogue that could open new avenues in the field of mechanics of materials, with special emphasis on the application of machine learning to experimental mechanics. It will bring together researchers who engage in new, multimodal, experimental methods in mechanics, with early adopters of machine learning tools in the fields of materials and mechanics, and leaders from the machine learning community. The workshop aims at developing a long term perspective for the introduction of Data Science methods to the field of mechanics of materials. Therefore, a specific aim is to assess the potential and the limitations of machine learning techniques in providing guidance and enhanced capabilities to quantify the contribution of the, often numerous and coupled, parameters governing the mechanics of complex materials and systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项拨款支持一个研讨会,以探索机器学习与实验力学和材料的使用。具有复杂加工和结构的新材料的快速发展,以及用于材料和力学表征的新型和强大的计算机辅助实验方法的出现,导致了有效和高效地分析非常大的数据集以确定控制整体力学行为的重要参数的挑战。虽然建立和详细的方法,以材料物理和力学为基础,作为评估和设计具有理想机械性能的新型材料的基础,但数据科学驱动的方法用于快速评估重要问题参数,可以加速材料的开发,并通过快速过程从大型实验和建模数据集中识别结构-机械性能关系,促进过渡。这种能力可以影响新的和新兴的制造方法,例如增材制造,帮助我们理解生物材料系统中的复杂过程,并最终加速机械坚固材料系统的设计。本次研讨会旨在将力学家与数据科学领域的研究人员联系起来,进行对话,以开辟材料力学领域的新途径,特别强调机器学习在实验力学中的应用。它将汇集从事新的,多模态,力学实验方法的研究人员,材料和力学领域机器学习工具的早期采用者,以及机器学习社区的领导者。本次研讨会旨在为材料力学领域的数据科学方法的引入发展一个长期的视角。因此,一个特定的目标是评估机器学习技术在提供指导和增强能力方面的潜力和局限性,以量化控制复杂材料和系统力学的众多和耦合参数的贡献。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ioannis Chasiotis其他文献
The nonlinear elastic deformation of liquid inclusions embedded in elastomers
嵌入弹性体中的液态夹杂物的非线性弹性变形
- DOI:
10.1016/j.jmps.2025.106126 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:6.000
- 作者:
Oluwadara Moronkeji;Fabio Sozio;Kamalendu Ghosh;Amira Meddeb;Amirhossein Farahani;Zoubeida Ounaies;Ioannis Chasiotis;Oscar Lopez-Pamies - 通讯作者:
Oscar Lopez-Pamies
The Role of ESG Performance in the Capital Structure-Market Competition Nexus: Some Evidence from Japan
ESG 绩效在资本结构与市场竞争关系中的作用:来自日本的一些证据
- DOI:
10.4236/tel.2023.133033 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ioannis Chasiotis;G. Georgakopoulos;A. Rezitis;Kanellos S. Toudas - 通讯作者:
Kanellos S. Toudas
Organization capital, dividends and firm value: International evidence
组织资本、股息与公司价值:国际证据
- DOI:
10.1016/j.intfin.2024.102074 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:6.100
- 作者:
Ioannis Chasiotis;Georgios Loukopoulos;Kanellos Toudas - 通讯作者:
Kanellos Toudas
The integration of share repurchases into investment decision-making: Evidence from Japan
将股票回购纳入投资决策:来自日本的证据
- DOI:
10.1016/j.irfa.2021.101950 - 发表时间:
2021 - 期刊:
- 影响因子:8.2
- 作者:
N. Apergis;Ioannis Chasiotis;Andreas G. Georgantopoulos;Dimitrios Konstantios - 通讯作者:
Dimitrios Konstantios
Does Market Competition Affect Environmental Innovation? Some International Evidence
市场竞争会影响环境创新吗?
- DOI:
10.4236/tel.2023.135061 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ioannis Chasiotis;G. Georgakopoulos;Kanellos S. Toudas - 通讯作者:
Kanellos S. Toudas
Ioannis Chasiotis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ioannis Chasiotis', 18)}}的其他基金
Conference: 2024 Gordon Research Conference and Gordon Research Seminar on Multifunctional Materials and Structures; Ventura, California; January 27-February 2, 2024
会议:2024戈登研究会议暨戈登多功能材料与结构研究研讨会;
- 批准号:
2332863 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Hybrid Random Fiber Networks
合作研究:混合随机光纤网络的机制
- 批准号:
2022471 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Experimental/Computational Study of the Mechanics of Nanofiber Networks
合作研究:纳米纤维网络力学的综合实验/计算研究
- 批准号:
1635681 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Experiments and Models on Room Temperature Creep of Nanocrystalline Metallic Films
纳米晶金属薄膜室温蠕变实验与模型
- 批准号:
0927149 - 财政年份:2009
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
PECASE: Nanoscale Confinement in Polymers: Integrated Research and Education in Nanoscale Experimental Mechanics
PECASE:聚合物中的纳米级约束:纳米级实验力学的综合研究和教育
- 批准号:
0748120 - 财政年份:2008
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
NIRT: Novel Experiments and Models for the Nanomechanics of Polymeric and Biological Nanofibers
NIRT:聚合物和生物纳米纤维纳米力学的新颖实验和模型
- 批准号:
0532320 - 财政年份:2005
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Investigation of the Deformation, Fatigue and Fracture Properties of Amorphous Diamond-like Carbon Films
非晶类金刚石碳膜的变形、疲劳和断裂性能研究
- 批准号:
0515111 - 财政年份:2005
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
NIRT: Novel Experiments and Models for the Nanomechanics of Polymeric and Biological Nanofibers
NIRT:聚合物和生物纳米纤维纳米力学的新颖实验和模型
- 批准号:
0403876 - 财政年份:2004
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Investigation of the Deformation, Fatigue and Fracture Properties of Amorphous Diamond-like Carbon Films
非晶类金刚石碳膜的变形、疲劳和断裂性能研究
- 批准号:
0301584 - 财政年份:2003
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
- 批准号:
2346717 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Cooperative Agreement
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
- 批准号:
23K20272 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2414185 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Adaptive Tensor Network Decomposition for Multidimensional Machine Learning Theory and Applications
多维机器学习理论与应用的自适应张量网络分解
- 批准号:
24K20849 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploring Theory and Design Principles (ETD): Auditing Machine Learning Applications for Algorithmic Justice with Computer Science High School Students and Teachers
探索理论和设计原则 (ETD):与计算机科学高中学生和教师一起审核机器学习应用程序的算法正义
- 批准号:
2342438 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
DMS/NIGMS 1: Multilevel stochastic orthogonal subspace transformations for robust machine learning with applications to biomedical data and Alzheimer's disease subtyping
DMS/NIGMS 1:多级随机正交子空间变换,用于稳健的机器学习,应用于生物医学数据和阿尔茨海默病亚型分析
- 批准号:
2347698 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
New fast beam loss monitor system for Diamon-ll and machine learning applications
适用于 Diamon-ll 和机器学习应用的新型快速光束损失监测系统
- 批准号:
2878859 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Studentship
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
- 批准号:
2341183 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
- 批准号:
23K13008 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists