Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
基本信息
- 批准号:1940125
- 负责人:
- 金额:$ 38.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2020-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability to model, predict, and improve the mechanical performance of engineering materials such as polymers, composites, and alloys can have a significant impact on manufacturing, with important economic and societal benefits. As advanced computational algorithms and data science approaches become available, they can be harnessed to disrupt the current approaches to materials modeling, and allow for the design and discovery of new high-strength, high-performance materials for manufacturing. Bringing together multidisciplinary teams of researchers can maximize the impact of these new tools and techniques. This Harnessing the Data Revolution Institutes for Data-Intensive Research in Science and Engineering (HDR-I-DIRSE) award supports the conceptualization of an Institute to develop novel data science methods, address fundamental scientific questions of Materials Engineering and Manufacturing, and build such multidisciplinary teams. The project will apply novel data science methods to advance the analysis of large sets of structural data of composite materials and alloys from the atomic scale to correlate with and predict mechanical properties. The methods are based on machine learning techniques and uncertainty quantification, and will help uncover underlying structural features in the materials that determine the properties and performance. The methods and results will help accelerate the development of ultra-high strength and lightweight carbon-based composites for aerospace applications, and multi-element superalloys for more durable engine parts, by navigating in the large possible design space and providing faster predictions than experiments and traditional simulation methods. The project will also lead to new methods and computational algorithms that will become publicly available. The investigators will train graduate and undergraduate students from various disciplines with a focus on engaging women and minorities in STEM fields, develop short courses that integrate novel Materials Science and Engineering applications and Data Science methods, and foster vertical integration of interdisciplinary research from undergraduate students to senior scientists.This project aims at building an effective and interpretable learning framework for materials data across scales to solve a major challenge in current data-driven materials design. The combined Materials Science and Data Science approaches will synergistically contribute to the development and use of interpretable and physics-informed data science methodologies to gain new understanding of mechanical properties of polymer composites and alloys, with the potential to be expanded into different property sets and different systems. The PIs will utilize available data efficiently through combination with physical rules and prior knowledge, to develop an interpretable augmented intelligent system to learn principles behind the association of input structures with material properties with uncertainty quantification. The interconnected tasks involve the (1) collection and curation of large amounts of computational and experimental data for polymer/carbon nanotube composites and alloys from open data sources and targeted calculations and experiments, (2) the development of geometric and topological methods incorporating physical principles to generate a better, more sensitive low-dimensional representation of the multidimensional data and characterize the parameter space related to mechanical properties, (3) the development of a Bayesian deep reinforcement learning framework to generate interpretable knowledge graphs that depict the relational knowledge among physical quantities with uncertainty quantification, and (4) the prediction of mechanical properties to reveal design principles to improve materials performance, evaluate and validate the methods, and develop software for dissemination. This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity and is co-funded by the Division of Civil, Mechanical and Manufacturing Innovation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对聚合物、复合材料和合金等工程材料的机械性能进行建模、预测和改进的能力可以对制造业产生重大影响,具有重要的经济效益和社会效益。随着先进的计算算法和数据科学方法的出现,它们可以被利用来颠覆当前的材料建模方法,并允许设计和发现新的高强度、高性能的制造材料。将多学科研究团队聚集在一起可以最大限度地发挥这些新工具和技术的影响。这项利用数据革命科学与工程数据密集型研究研究所(HDR-I-DIRSE)的奖项支持一个研究所的概念化,以开发新的数据科学方法,解决材料工程和制造的基本科学问题,并建立这样的多学科团队。该项目将应用新的数据科学方法,从原子尺度推进对复合材料和合金的大量结构数据的分析,以关联和预测机械性能。这些方法基于机器学习技术和不确定性量化,将有助于揭示决定材料性能和性能的潜在结构特征。这些方法和结果将有助于加速航空航天应用的超高强度和轻质碳基复合材料的开发,以及用于更耐用的发动机部件的多元高温合金的开发,因为它们可以在可能的广阔设计空间中导航,并提供比实验和传统模拟方法更快的预测。该项目还将带来新的方法和计算算法,这些方法和算法将公开可用。研究人员将培训不同学科的研究生和本科生,重点是让女性和少数族裔参与STEM领域,开发整合新型材料科学和工程应用以及数据科学方法的短期课程,并促进从本科生到高级科学家的跨学科研究的垂直整合。该项目旨在为跨尺度的材料数据建立一个有效和可解释的学习框架,以解决当前数据驱动材料设计的主要挑战。材料科学和数据科学相结合的方法将协同促进可解释和物理信息的数据科学方法的开发和使用,以获得对聚合物复合材料和合金的力学性能的新理解,并有可能扩展到不同的属性集和不同的系统。PIS将通过结合物理规则和先验知识有效地利用现有数据,开发一种可解释的增广智能系统,以学习输入结构与具有不确定性量化的材料属性之间的关联背后的原理。相互关联的任务涉及(1)收集和整理来自开放数据源的大量聚合物/碳纳米管复合材料和合金的计算和实验数据,以及有针对性的计算和实验,(2)开发结合物理原理的几何和拓扑方法,以生成多维数据的更好、更灵敏的低维表示,并表征与机械性能有关的参数空间,(3)开发贝叶斯深度强化学习框架,以生成描述具有不确定性量化的物理量之间的关系知识的可解释知识图,以及(4)机械性能的预测,以揭示改进材料性能的设计原则,评估和验证方法,并开发用于传播的软件。该项目是国家科学基金会利用数据革命(HDR)大创意活动的一部分,由土木工程、机械和制造创新部共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Persistence Enhanced Graph Neural Network
- DOI:
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Qi Zhao;Ze Ye;Chao Chen;Yusu Wang
- 通讯作者:Qi Zhao;Ze Ye;Chao Chen;Yusu Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yusu Wang其他文献
Measuring Distance between Reeb Graphs
测量 Reeb 图之间的距离
- DOI:
10.1145/2582112.2582169 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Ulrich Bauer;Xiaoyin Ge;Yusu Wang - 通讯作者:
Yusu Wang
Local Versus Global Distances for Zigzag and Multi-Parameter Persistence Modules
Zigzag 和多参数持久性模块的本地距离与全局距离
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ellen Gasparovic;Maria Gommel;Emilie Purvine;R. Sazdanovic;Bei Wang;Yusu Wang;Lori Ziegelmeier - 通讯作者:
Lori Ziegelmeier
Approximating nearest neighbor among triangles in convex position
近似凸位置三角形之间的最近邻
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0.5
- 作者:
Yusu Wang - 通讯作者:
Yusu Wang
Towards topological methods for complex scalar data
复杂标量数据的拓扑方法
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yusu Wang;Issam Safa - 通讯作者:
Issam Safa
Yusu Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yusu Wang', 18)}}的其他基金
Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
- 批准号:
2310411 - 财政年份:2023
- 资助金额:
$ 38.76万 - 项目类别:
Standard Grant
AI Institute for Learning-Enabled Optimization at Scale (TILOS)
AI 大规模学习优化研究所 (TILOS)
- 批准号:
2112665 - 财政年份:2021
- 资助金额:
$ 38.76万 - 项目类别:
Cooperative Agreement
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
- 批准号:
2051197 - 财政年份:2020
- 资助金额:
$ 38.76万 - 项目类别:
Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
2039794 - 财政年份:2020
- 资助金额:
$ 38.76万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
- 批准号:
1733798 - 财政年份:2017
- 资助金额:
$ 38.76万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research:Geometric and topological algorithms for analyzing road network data
AF:小型:协作研究:用于分析道路网络数据的几何和拓扑算法
- 批准号:
1618247 - 财政年份:2016
- 资助金额:
$ 38.76万 - 项目类别:
Standard Grant
AF: Small: Analyzing Complex Data with a Topological Lens
AF:小:用拓扑透镜分析复杂数据
- 批准号:
1526513 - 财政年份:2015
- 资助金额:
$ 38.76万 - 项目类别:
Standard Grant
AF: Small: Approximation Algorithms and Topological Graph Theory
AF:小:近似算法和拓扑图论
- 批准号:
1423230 - 财政年份:2014
- 资助金额:
$ 38.76万 - 项目类别:
Standard Grant
AF: Small: Geometric Data Processing and Analysis via Light-weight Structures
AF:小型:通过轻量结构进行几何数据处理和分析
- 批准号:
1319406 - 财政年份:2013
- 资助金额:
$ 38.76万 - 项目类别:
Standard Grant
AF: EAGER: Collaborative Research: Integration of Computational Geometry and Statistical Learning for Modern Data Analysis
AF:EAGER:协作研究:现代数据分析的计算几何与统计学习的集成
- 批准号:
1048983 - 财政年份:2010
- 资助金额:
$ 38.76万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
2404816 - 财政年份:2023
- 资助金额:
$ 38.76万 - 项目类别:
Standard Grant
Collaborative Research: Project AIM-NEXT: All Included in Mathematics New Extensions
合作研究:AIM-NEXT 项目:全部包含在数学新扩展中
- 批准号:
2200371 - 财政年份:2022
- 资助金额:
$ 38.76万 - 项目类别:
Continuing Grant
Collaborative Research: AIM & ICERM Research Experiences for Undergraduate Faculty (REUF)
合作研究:AIM
- 批准号:
2015375 - 财政年份:2020
- 资助金额:
$ 38.76万 - 项目类别:
Standard Grant
Collaborative Research: AIM & ICERM Research Experiences for Undergraduate Faculty (REUF)
合作研究:AIM
- 批准号:
2015462 - 财政年份:2020
- 资助金额:
$ 38.76万 - 项目类别:
Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
2039794 - 财政年份:2020
- 资助金额:
$ 38.76万 - 项目类别:
Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
1940107 - 财政年份:2019
- 资助金额:
$ 38.76万 - 项目类别:
Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
1940114 - 财政年份:2019
- 资助金额:
$ 38.76万 - 项目类别:
Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
1940203 - 财政年份:2019
- 资助金额:
$ 38.76万 - 项目类别:
Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
1940335 - 财政年份:2019
- 资助金额:
$ 38.76万 - 项目类别:
Standard Grant
Collaborative: AIM & ICERM Research Experiences for Undergraduate Faculty Workshops
合作:AIM
- 批准号:
1620080 - 财政年份:2016
- 资助金额:
$ 38.76万 - 项目类别:
Continuing Grant